PCAN Driver for Linux Vv8

CAN Driver and Library API for Linux

User Manual

Document version 3.10.0 (2024-12-12)

PCAN Driver for Linux v8 - User Manual u

System

Relevant Products

Product Name Version Part number
PCAN Driver for Linux 8.x.X not applicable

PCAN® is a registered trademark of PEAK-System Technik GmbH.
Other product names in this document may be the trademarks or registered trademarks of their respective companies. They are not
explicitly marked by ™ or ®.

© 2024 PEAK-System Technik GmbH

Duplication (copying, printing, or other forms) and the electronic distribution of this document is only allowed with explicit
permission of PEAK-System Technik GmbH. PEAK-System Technik GmbH reserves the right to change technical data without prior
announcement. The general business conditions and the regulations of the license agreement apply. All rights are reserved.

PEAK-System Technik GmbH
Leydheckerstral3e 10

64293 Darmstadt

Germany

Phone: +49 6151 8173-20
Fax: +49 6151 8173-29

www.peak-system.com
info @peak-system.com

Document version 3.10.0 (2024-12-12)

https://www.peak-system.com/
mailto:info@peak-system.com

PCAN Driver for Linux v8 - User Manual u

System

contents
1 Disclaimer 4
2 Introduction 5
2.1 Features 5
2.2 System Requirements 6
2.3 Scope of Supply 6
3 Installation 7
3.1 Build Binaries 7
3.2 1Install package 9
3.3 configure Software 10
3.4 cConfigure Non-PnP-Hardware 13
4 Usage of the Driver 14
4.1 Driver loading 14
4.2 Udev Rules 15
4.3 /proc Interface 19
4.4 /sysfs Interface 20
4.5 Tlspcan Tool 25
4.6 pcanosdiag.sh Tool 27
4.7 read/write Interface 27
4.8 test Directory 29
4.8.1 receivetest 30
4.8.2 transmitest 31
4.8.3 pcan-settings 32
4.8.4 bitratetest 33
4.8.5 pcanfdtst 34
4.9 netdev Mode 40
4.9.1 assign Parameter 40
4.9.2 defclk Parameter 41
4.9.3 ifconfig/iproute?2 41
4.9.4 can-utils 43
4.10 USB Mass Storage Device Mode 44
5 Developer Guide 47
5.1 chardev Mode 47
5.1.1 CAN 2.0 API 49
5.1.2 CAN FD API 53
5.2 netdev Mode 68

PCAN Driver for Linux v8 - User Manual u

System

1 Disclaimer

The provided files are part of the PCAN Driver for Linux package.

This is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 3 of the License, or (at your option)
any later version.

The software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY:; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with the software package. If
not, see https://www.gnu.org/licenses/.

0 Important note: It is strictly prohibited to use the intellectual property from the provided source code

for developing or producing a compatible hardware. All rights are reserved by PEAK-System Technik
GmbH.

https://www.gnu.org/licenses/

PCAN Driver for Linux v8 - User Manual u

System

2 Introduction

With the PCAN Driver for Linux, you can use CAN 2.0 and, since v8, CAN FD hardware products from
PEAK-System under Linux-based systems. Even if the use of Linux 2.4 kernels is declining, the canonical
age of the driver ensures compatibility with some versions of this kernel line and with older PEAK-
System hardware products.

The driver is also compatible with the latest versions of well-known real-time (RT) extensions like
Xenomai' and RTAI?, by interfacing to the common “Real Time Driver Mode” model.

Historically, the PCAN Driver for Linux provides an application programming interface called chardev by
implementing the character mode device drivers system calls (open, read, write, close, poll, ioctl). Since
version 20070306_n, the driver also provides a netdev interface which, by integrating the Kernel
SocketCAN network sub-layer, provides applications with access to the PEAK-System CAN channels via
the socket interface of the Linux kernel. The choice of the selected interface is exclusively done when
building the driver; the driver cannot run offering both interfaces at the same time.

@ Note: Since the Linux kernel v3.6, PEAK-System has worked to include the support of their most-
used PC CAN interfaces in the mainline Kernel. Thus, if you plan to get access to the CAN bus with a
PC CAN interface made by PEAK-System from a socket-based application, there is no need of
installing this PCAN Driver for Linux package anymore. The so-called netdev interface is however
kept for backward compatibility.

Version 8 of the PCAN Driver for Linux is a major evolution since it mainly includes the support of the
new CAN FD specification. Because of the new features CAN FD proposes, the historical chardev APl has
had to evolve, too. Time has come for PCAN to propose a more modern and scalable new chardev
interface, while the “old” good one is obviously always supported.

The package is always evolving, because of the constant support of some new hardware products made
by PEAK-System, some new versions of tools and Kernels, or because of some bug fixing. The latest
version can be downloaded from the PEAK-System website:

https://www.peak-system.com/linux/

2.1 Features

Support of all CAN 2.0 a/b and CAN FD hardware products made by PEAK-System
Support of all 2.6.x, 3.x, and 4.x Linux Kernels in 32 and 64-bit environments
DESTDIR and cross-compilation supported

Udev system support

Enhanced sysfsintegration

Optimized character mode device driver interface (chardev) supporting CAN 2.0 as well as CAN
FD standard and multiple messages transfers between applications and the driver

SocketCAN device driver interface (netdev) supporting CAN 2.0 as well as CAN FD new features,
with enhanced NETLINK integration (/p /ink support)

' Website Xenomai: https://xenomai.org
2 Website RTAI: https://www.rtai.org

https://www.peak-system.com/linux/
https://xenomai.org/
https://www.rtai.org/

PCAN Driver for Linux v8 - User Manual u

System

Real-time Linux extensions like Xenomai 3.x and RTAIl 4.x and 5.x supported by the driver, as well
as by the user space library and the test and examples applications (chardev interface only)

Full binary compatibility with existing CAN 2.0 chardev applications that run over older versions
of the driver (7.x and older)

2.2 System Requirements

Linux-based system running a 32 or a 64-bit Kernel
PC CAN interface from PEAK-System
make, gcc

The kernel headers (or Linux headers) package of the running Linux or the sources tree of a
cross-compiled Kernel

g++ and libstdc++
libpopt-dev package

ﬂ Note: The g++ compiler as well as the libpopt-dev package are only required for building some user
space applications from the test directory.

2.3 Scope of Supply

PCAN Driver for Linux installation including
e device driver module sources and Makefile
e user libraries sources and Makefile
o test and tools applications sources and Makefile
e Udev rules
e Libpcanbasic for Linux library and examples sources and Makefile

Documentation (this user manual) in PDF format

PCAN Driver for Linux v8 - User Manual u

System

3 Installation

The PCAN Driver for Linux is an out-of-tree driver module, and because of the GPL, it is provided in a
(compressed) tarball package including the source files of the driver as well as the user libraries and
some test utilities and tools (see 2.3 Scope of Supply on page 6).

This chapter covers the setup of the whole driver package under non-RT and RT Linux systems (root
privileges are required for the installation part). Also, cross-compilation options are explained.

3.1 Build Binaries

®» Do the following to install the package:

1. Untar the compressed tarball file from your $HOME (for example) directory:

$ tar -xzf peak-linux-driver-X.Y.Z.tar.gz
$ cd peak-linux-driver-X.Y.Z

2. Clean the world:

‘$ make clean

®» To build non-real time binaries with default configuration:

‘$ make

ﬂ Note: This behavior is new from v8.x of the driver! In former versions, the global make command did
build enabling the netdev interface rather than the chardev one. The main reason of that change is
that a great number of PEAK-System CAN hardware products are now natively supported by the
mainline kernel as SocketCAN interfaces®. Thus, driver users are supposed to prefer using the
chardev interface instead. But of course, the netdev interface can always be selected by rebuilding
the driver (only) with:

$ make -C driver NET=NETDEV_SUPPORT

Or, using the shortcut:

‘$ make netdev

®» To build real-time binaries running in a Xenomai kernel:

$ make RT=XENOMAI

3 Kernel code: https:/elixir.bootlin.com/linux/v3.4/source/drivers/net/can/usb/peak_usb/pcan_usb_core.c

https://elixir.bootlin.com/linux/v3.4/source/drivers/net/can/usb/peak_usb/pcan_usb_core.c

PCAN Driver for Linux v8 - User Manual u

System

e Note: Since driver version 8.2, you can also build the Xenomai binaries with:

E

make xeno

®» To build real-time binaries running in a RTAI kernel:

E

make RT=RTAI

6 Note: Since driver version 8.2, you can also build the RTAI binaries with:

E

make rtai

Note: Selecting one of the above real-time compilations also removes the support of some of the
non-RT PC CAN interfaces (like the USB adapters, for example).

®» To cross-compile binaries:

$ make KERNEL LOCATION=/where/are/the/kernel/headers

Making something from the package’s root directory recursively makes this thing into:

1.
2.
3.
4,

It is equivalent to the following 3 commands:

the driver directory,
the 1ib directory, and
the test directory.

The 1ibpcanbasic directory.

Uy U 1 U

make -C driver

make -C 1lib

make -C test

make -C libpcanbasic

» Making the 32-bit version of the library:

Since driver version 8.5, the 32-bit version of the 1ibpcan library is automatically built (and installed)
when running a 64-bit Kernel if the current C compiler is able to.

6 Note: The gcc-multilib package must be installed.

The default configuration of the PCAN Driver for Linux in non-RT configuration is to handle the support of
all PC CAN interfaces. However, in order to save memory or to fix some cross-compilation and/or loading
issues, it is possible to remove the support of some of these interfaces. The driver's Makefile handles the

following set of switches from the make command line:

Variable Value

DNG

DONGLE SUPPORT

NO_DONGLE_ SUPPORT

Description

Include the support of the parallel port CAN interfaces from PEAK-System
in the driver

Remove the support of the parallel port CAN interfaces from the driver
(default)

PCAN Driver for Linux v8 -

Variable Value
USB USB_SUPPORT

NO_USB_SUPPORT
PCI PCI_SUPPORT

NO_PCI_SUPPORT
PCIEC PCIEC_SUPPORT
NO PCIEC SUPPORT

ISA ISA SUPPORT

NO_ISA SUPPORT
PCC PCCARD SUPPORT

NO_PCCARD SUPPORT

User Manual L

System

Description

Include the support of the USB CAN interfaces from PEAK-System in the
driver (default)

Remove the support of the USB CAN interfaces from the driver

Include the support of the PCI/PCle CAN interfaces from PEAK-System in
the driver (default)

Remove the support of the PCI/PCle CAN interfaces from the driver

Include the support of the ExpressCard CAN interfaces from PEAK-System
in the driver (default). Note that loading the driver built with
PCIEC SUPPORT will automatically load the “i2c_algo_bit” module too.

Remove the support of the ExpressCard CAN interfaces from the driver

Include the support of the ISA/PC104 CAN interfaces from PEAK-System in
the driver (default)

Remove the support of the ISA/PC104 CAN interfaces from the driver

Include the support of the PCCard CAN interfaces from PEAK-System in
the driver

Remove the support of the PCCard CAN interfaces from the driver
(default)

Table 1: Supported PC CAN interfaces switches

For example, to build the driver including the support of the PCAN-Dongle and the PCAN-PC Card CAN

interfaces:

$ make -C driver DNG=DONGLE SUPPORT PCC=PCCARD SUPPORT

To know which variant of the driver (chardev, netdev or RT) has been built, type in the “driver” directory:

$ modinfo pcan.ko | grep -e “description:

3.2 Install Package

®» Once binaries are built, do the following to install the package:

1. Be sure to be in the driver package root directory:

‘$ cd peak-linux-driver-X.Y.Z

2. Install everything (root privileges are required):

a) On Debian-based systems, users can use the sudo command:

$ sudo make install

b) Otherwise, installation is done with:

$ su -c¢ "make install"

The above setup will build and install the driver, the user libraries, and the test programs on the running

system.

PCAN Driver for Linux v8 -

User Manual

System

Since v8.14, the driver can also be installed with DKMS support. DKMS is a software system that handles
the rebuild of the driver when a new Kernel has been installed in the running Linux based host. To take
advantage of DKMS, one have to install the driver with:

‘$ sudo make install with dkms

Calling the Makefile target "install with dkms" can be done from the root of peak-linux-driver-
x.y.z or from the subdirectory "driver". In the first case, the other components (libs and programs) will
be installed in the same way as if "make install" had been called.

3.3

Configure Software

The PCAN Driver for Linux runs with some default settings. Some of them can be changed by passing
parameters to the module when it is loaded:

Parameter
type

io

irg

btrObtrl

bitrate

dbitrate

assign

usemsi

irgmaxloop

irgmaxrmsg

Type

List of characters strings, separated by “,
(comma).

List of hexadecimal values, separated

by”,” (comma).
o

List of decimal values, separated by “,
(comma).

Hexadecimal value.

Numeric value. An ending k is interpreted
as factor 1,000, while an ending M is
interpreted as factor 1,000,000.

Numeric value. An ending k is interpreted
as factor 1,000, while an ending M is
interpreted as factor 1,000,000.

Characters string

Numeric value

Numeric value

Numeric value

Description

Gives the list of (maximum) 8 PC CAN interfaces that can't be
detected by the plug-and-play system. Known types are:

type PC CAN interface

isa ISA and PC/104

sp Standard parallel port
epp Enhanced parallel port

Gives the list of I/0 ports to use to dialog with the corresponding PC
CAN interface (see type).

Gives the list of IRQ levels to connect to dialog with the
corresponding PC CAN interface (see type).

Change the default (nominal) bitrate value set to every CAN/CAN FD
channel when it is opened. The hexadecimal value is interpreted as a
BTROBTR1 value (see SJA1000 specifications). If this parameter is not
provided when the module is loaded, the default bitrate value is 0x1c
(500 kbit/s).

Change the default (nominal) bitrate value set to every CAN/CAN FD
channel when it is opened. If this parameter is not provided when the
module is loaded, the default bitrate value is Ox1c (500 kbit/s). See
also the note below.

Change the default data bitrate value set to every CAN FD channel
when it is opened. If this parameter is not provided when the module
is loaded, the default data bitrate value is 2,000,000 (2 Mbit/s).

Since v8.11, if dbitrate is 0, then the CAN-FD device initializes in
CAN 2.0 a’/b mode only.
Change the default name assignment between PCAN and SocketCAN

layer (see 4.9.1 assign Parameter on page 40). This parameter is only
used when the netdev interface is selected.

This parameter controls usage of MSI for the PCle-based CAN 2.0
cards:

0 INTA mode (no MSI)
1 Full MSI mode (one IRQ per channel)
2 Shared MSI (one IRQ per device)

0 is the default mode.

Set the maximum number of read loops performed by the SJA1000
interrupt handler. Its default value is 6.

Set the maximum number of messages read by the SJA1000
interrupt handler per interrupt. Its default value is 8.

10

PCAN Driver for Linux v8

Parameter

fdusemsi

fdirgcl

fdirgtl

fast fwd

rxgsize

txgsize

rxgprealloc

txgprealloc

txghiwat

Type
Numeric value

Numeric value

Numeric value

Numeric value

Numeric value

Numeric value

Numeric value

Numeric value

Numeric value

User Manual

System

Description

This parameter controls usage of MSI for the PCle-based CAN FD
cards:

0 INTA mode (no MSI)
1 Full MSI mode (one IRQ per channel)
2 Shared MSI (one IRQ per device)

0 is the default mode.

Define the number of frames received after which the CANFD
firmware of the PCle family cards will generate an interrupt. Its
default value is 16.

Define the delay in 1/10th ms after which the CANFD firmware of the
PCle family cards will generate an interrupt. Its default value is 10.

Tell the USB CANFD interfaces to transfer the received frames as
soon as they arrive rather than waiting a while to agglomerate them
and thus minimize the USB traffic. Its default value is 0 (no fast
forward).

Define the maximum number of messages that can be saved by the
driver into the channel Rx queue. Once the Rx queue is full, next
incoming CAN frames are discarded by the driver and the
CAN_ERR_OVERRUN (0x0002) flag is set. Default value is 2000.

Define the maximum number of messages that can be stored by the
application into the channel Tx queue. Once the Tx queue is full, next
write will block the application or, if O_NONBLOCK was set, will fail
with errno = EAGAIN. Default value is 500.

When the value is 1, the driver allocates the channel's message
receive queue once and for all when it is loaded and releases it when
it is removed from memory, as opposed to the default operation
(value 0) where the receive queue is allocated every time the channel
is opened and is released when the channel is closed.

When the value is 1, the driver allocates the channel's message
transmit queue once and for all when it is loaded and releases it
when it is removed from memory, as opposed to the default
operation (value 0) where the transmit queue is allocated every time
the channel is opened and is released when the channel is closed.

Define the maximum level beyond which the driver will no longer
wake up the task waiting to write on the Tx queue. Its value varies
from 50.00% (5000) to 100.00% (10000). The default value is 10000
(8000 in netdev mode)

11

PCAN Driver for Linux v8 - User Manual u

System

Parameter Type Description

deftsmode Numeric value Control how hardware timestamps are handled by the driver, if the
PC CAN interface is able to provide such timestamps:

0 Timestamps are host (software) timestamps. Timestamp of
a received CAN frame corresponds to the time the frame has
been saved into the driver Rx queue.

1 Timestamps are based on host time + an offset made of
hardware timestamps. The host time base is periodically
updated by the driver when receiving notifications from the
PC CAN interface. The offset corresponds to the hardware
time found in the received CAN frames.

2 Same as 1 except that the hardware offset is cooked to
handle any possible clock drift between the CPU and the PC
CAN interface quartz.

3 Timestamps are made of hardware timestamps received
from the PCAN interface. This means that this timestamp IS
NOT a host time, but a count of seconds and ps. since the
PC CAN interface has been initialized.

Reserved

Same as 1, except that the timestamp measurement is

triggered on SOF instead of EOF (if device allows it).

6 Same as 2, except that the timestamp measurement is
triggered on SOF instead of EOF (if device allows it).

7 Same as 3, except that the timestamp measurement is
triggered on SOF instead of EOF (if device allows it).

(S0

Default mode depends on the PC CAN interface:
0 SJA1000 based internal bus PCAN interfaces default and
unique mode.

1 PCAN-USB and PCAN-USB Pro default mode.
2 CAN FD PCAN interfaces.
defclk Characters string Define the default clocks values for the PCAN channels, when the

driver is built in netdev mode (see 4.9.2 defclk Parameter on page 41).

defblperiod | Numeric value Defines the period in ms. of the message informing the application of
the bus load rate, when it has changed. The default value is 500

drvclkref Numeric value Define which clock reference the driver is based on, to compute host
time timestamps it gives to the applications.

Valid values can be:
0 Real-time clock
1 Monotonic clock
4 Monotonic raw clock
7 Boot time clock

See also “Table 6: clock reference used by the driver for the
timestamps” on page 21.

Table 2: Driver module parameters

ﬂ Note: The bitrate= parameter has changed since v8.x of the driver. In previous versions, this para-
meter allowed to change the default nominal bitrate, but with following the coding format of the
BTROBTR1 SJA1000 register only.

In order to ensure the best backward compatibility with the existing configurations, the bitrate=
parameter is now parsed as follows:

If the two first characters of the given value are 0x or 0x and if the hexadecimal value is smaller
than 65536, then the value is always interpreted as a BTROBTR1 bitrate specification (as the driver
did in previous versions).

Otherwise, and if the value is obviously a numeric value, then it is used as a bit-per-second (bit/s)
bitrate specification.

12

PCAN Driver for Linux v8 - User Manual u

System

These parameters and their values can be given on the insmod command line or can be written in the
/etc/modprobe.d/pcan.conf file. The system administrator has to edit this file, then to uncomment
the options pcan line, and to write his own settings.

3.4 Configure Non-PnP-Hardware

6 Note: This paragraph only concerns the users of some non-plug-and-play PC CAN interfaces (like the
PCAN-ISA and PC/104 PC CAN interfaces family). The configuration of the driver for the PCI/PCle and
USB PC CAN interfaces families is entirely handled by the system.

When using some non-plug-and-play PC CAN interfaces, the driver has to be informed of the IRQs and

I/0 ports configured for these boards (see the provided hardware reference and the corresponding jum-
pers' usage). The installation procedure of the PCAN Driver for Linux has already created a configuration
text file which enables to define some optional arguments that are passed to the driver (see 3.3 Configure
Software on page 10), when it is loaded.

For example, if the Linux host is equipped with a two channels ISA PC CAN interface board, and if IRQ 5
(resp. IRQ 10) and I/O port 0x300 (resp. 0x320) is the configuration selected by the dedicated jumpers on
the board, then the /etc/modprobe.d/pcan.conf file has to be changed like this:

$ sudo vi /etc/modprobe.d/pcan.conf

PCAN - automatic made entry, begin --------

if required add options and remove comment
options pcan type=isa,isa irg=10,5 io=0x300,0x320
install pcan /sbin/modprobe --ignore-install pcan
PCAN - automatic made entry, end ----------

The standard assignments for ISA and PC/104 PC CAN interfaces are (io/irq): 0x300/10, 0x320/5. The
standard assignments for the PCAN-Dongle in SP/EPP mode are (io/irq): 0x378/7, 0x278/5.

13

PCAN Driver for Linux v8 - User Manual

4 Usage of the Driver

System

Once installed, and if the Udev system is running on the target system, the driver is automatically loaded

by the system at the next boot for internal PC CAN interfaces, like the PCI/PCle boards, or when the

external PC CAN interface (like the USB adapters) is plugged into the system.

4.1 Driver loading

Being a module, the driver, however, can be loaded without rebooting the system by asking the system
to probe for the PCAN module (root privileges are required):

‘$ sudo modprobe pcan

Note: The modprobe system command manages to load all the other modules the driver depends

on. When using insmod instead, you must load all of these modules manually:

$ modinfo pcan.ko
depends:

| grep -e "“depends:"

pcmcia, parport,i2c-algo-bit

$ sudo modprobe pcmcia parport i2c-algo-bit
$ sudo insmod pcan.ko

The driver is reasonably verbose for the kernel: it logs one or several messages in the kernel logs buffer

for each PC CAN interface it enumerates. Next, it will save messages only when something wrong has

been detected.

Here are the messages it logs when it just has been loaded, for example:

S dmesg
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.
[24612.

| grep
510888]
510894]
511057]
511125]
511140]
511146]
511148]
511150]
511153]
516206]
516230]
516258]
516280]
516335]
516369]
516999]
517237]
517244]
517605]
517729]
517732]
518231]
518354]
522469]
522491]

pcan

pcan:
pcan:
pcan:

pcan

pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:
pcan:

Release YYYYMMMDD n (le)

driver config [mod] [isa] [pci] I[pec] [dng] [par] [usb] I[pcc]

uCAN PCI device sub-system ID 14h (4 channels)
0000:01:00.0: irg 48 for MSI/MSI-X

uCAN PCB v4h FPGA v1.0.5 (design 3)

pci uCAN device minor 0 found

pci uCAN device minor 1 found

pci uCAN device minor 2 found

pci uCAN device minor 3 found

pci device minor 4 found

pci device minor 5 found

pci device minor 6 found

pci device minor 7 found

isa SJA1000 device minor 8 expected (10=0x0300,irg=10)
isa SJA1000 device minor 9 expected (10=0x0320,irg=5)
new high speed usb adapter with 2 CAN controller(s) detected
PCAN-USB Pro FD (01h PCBOlh) fw v2.1.0

usb hardware revision = 1

PCAN-USB Pro FD channel 1 device number=30

usb device minor 0 found

usb hardware revision = 1

PCAN-USB Pro FD channel 2 device number=31

usb device minor 1 found

new usb adapter with 1 CAN controller(s) detected
usb hardware revision = 28

14

PCAN Driver for Linux v8 - User Manual u

System

[24612.579450] pcan: PCAN-USB channel device number=161
‘ [24612.579453] pcan: usb device minor 2 found

[24612.579487] usbcore: registered new interface driver pcan
‘ [24612.586265] pcan: major 249.

The driver enumerates each PC CAN interface according to its type. Up to version 8.5.1, each type had
the following range of device minor numbers:

Hardware type Minor number range
PCI/PCle [0...7]

ISA and PC/104 [8...15]

SP mode [16 ... 23]

EPP mode [24 ... 31]

USB [32 ... 39]

PC-CARD [40 ... 47]

Table 3: Device minor number ranges

The needs of CAN channels increasing, since v8.6.0, the driver enumerates the PC CAN interfaces
according to a different scheme:

Hardware type Minor number range
PCI/PCle [0...31]

USB [32 ... 63]

PC-CARD [64 ... 71]

ISA and PC/104 [72 ...79]

SP mode [80 ... 87]

EPP mode [88 ... 95]

Table 4: Device minor number ranges

This v8.6.0 new scheme gives more spaces to most used PC CAN interfaces, while always booking slot 32
for the first USB device channel.

4.2 Udev Rules

The Udev mechanism loads the non-RT driver when the system recognizes one of the devices it handles,
at boot time or when the hardware device is plugged into the system.

6 Note: No device nodes files are created when running the real-time version of the driver module
because it creates real-time (only) devices which are not connected in any way to the Udev system.

The installation of the driver package also adds some default rules to Udev, for helping the system to
create the device nodes that implement the CAN channels handled by the driver (see peak-1inux-
driver-x.y.z/driver/udev/45-pcan.rules). By default, Udev creates one (character) device node
under the /dev directory per CAN/CAN FD channel. The name of this device node is made of:

pcan prefix
PC CAN interface bus type (pci, isa, usb ...),
f£d suffix if the CAN channel is CAN-FD-capable

unigue minor number

15

PCAN Driver for Linux v8 - User Manual

For example:

System

CIW—IXrw—Irw-—
CrwW—Xrw—rw-—
CrwW—Xrw—rw-—
CIW—IXrw—Irw-—
CIW—IXrw—Irw-—
CIW—IXrw—Irw-—
CrwW—Xrw—rw-—
CrwW—Xrw—rw-—
CIW—IXrw—Irw-
CIW—IXrw—Irw-—
CIW—IXrw—Irw-
CrwW—Xrw—rw-—
CrwW—Xrw—rw-—

1

=

e e = = = T S S e

$ 1s -1 /dev/pcan*

root
root
root
root
root
root
root
root
root
root
root
root
root

| grep

root
root
root
root
root
root
root
root
root
root
root
root
root

246,
246,
246,
246,
246,
246,
246,
246,
246,
246,
246,
246,
246,

"/\C"

févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.

WWwWwwwwwwwwwww

14:
:59
:59
14:
14:
14:
:59
:59
124
124
14:
:59
:59

14
14

14
14
15
15

14
14

59

59
59
59

59

/dev/pcanisa8
/dev/pcanisad
/dev/pcanpciid
/dev/pcanpcib
/dev/pcanpcifd0
/dev/pcanpcifdl
/dev/pcanpcifd?2
/dev/pcanpcifd3
/dev/pcanusb35
/dev/pcanusb36
/dev/pcanusbfd3
/dev/pcanusbfd3
/dev/pcanusbfd3

2
3
4

The Udev rules that the driver installs enable to create some symbolic links that give much more

information about the CAN channel:

1. Udev rules create one /dev/pcanX per CAN channel

2. Udev rules group CAN channels according to their PC CAN interface into the same subdirectory
whose name is made of the PC CAN interface product name

3. Udev default rules also create some other symbolic links if the CAN channel exports a devid

property (different from -1) under /sys (as USB devices are able to, as well as PCle devices since
v8.10 of the driver).

The example below demonstrates the complete list of /dev/pcan* nodes, symbolic links, and
subdirectories the Udev rules provided with the driver might create.

lrwXrwxrwx
lrwXrwxrwx
lrwXrwxrwx
1rwXrwxrwx
1rwXrwxrwx
lrwXrwxrwx
lrwXrwxrwx
1rwXrwxrwx
1rwXrwxrwx
1rwXrwxrwx
lrwXrwxrwx
lrwXrwxrwx
1rwXrwxrwx
CIW—YW—Irw-—
CIW—YW—Irw-—
CIW—YW—TW-—
CIW—YW—TW—
CIW—YW—Irw-—
CIW—YW—Irw-—
CIW—YW—Irw-—
CIW—YW—TW-—
CIW—YW—TW-—
CIW—YW—Irw-—
CIW—YW—Irw-—
CIW—YW—Irw-—

1

PR R RRRPRRPRRRRRRPRRRPRRRRRRRRRE R

$ 1s -1 /dev/pcan*

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

246,
246,
246,
246,
246,
246,
246,
246,
246,
246,
246,
246,

N
O PP OOOO

NP O Ul d © 00 0 o o WO

févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.
févr.

WWWwWwWwWwWwWwWwwwwwwwwwwwwwwwwww

16

14
14
14
14
14
14
14

15
14
14
14
14
14
14

14
14
14

15

14
14

:59
:59
:59
:59
:59
:59
:59
15:
124
:59
:59
:59
:59
:59
:59
14:
14:
:59
:59
:59
14:
124
15:
:59
:59

24

59
59

59

24

/dev/pcan0 -> pcanpcifd0
/dev/pcanl -> pcanpcifdl
/dev/pcan2 -> pcanpcifd?2
/dev/pcan3 -> pcanpcifd3
/dev/pcan32 -> pcanusbfd32
/dev/pcan33 -> pcanusbfd33
/dev/pcan34 -> pcanusbfd34
/dev/pcan35 -> pcanusb35
/dev/pcan36 -> pcanusb36

/dev/pcan4 -> pcanpcié
/dev/pcan5 -> pcanpci5
/dev/pcan8 -> pcanisa8
/dev/pcan9 -> pcanisa9

/dev/pcanisa8
/dev/pcanisad
/dev/pcanpcid
/dev/pcanpcib
/dev/pcanpcifd0
/dev/pcanpcifdl
/dev/pcanpcifd?2
/dev/pcanpcifd3
/dev/pcanusb35
/dev/pcanusb36
/dev/pcanusbfd3
/dev/pcanusbfd3

2
3

PCAN Driver for Linux v8 - User Manual

System

crw-rw-rw—- 1 root root 246, 34 févr. 3 14:59 /dev/pcanusbfd34

lrwxrwxrwx 1 root root 11 févr. 3 14:59 /dev/pcanusbpfd32 -> pcanusbfd32
lrwxrwxrwx 1 root root 11 févr. 3 14:59 /dev/pcanusbpfd33 -> pcanusbfd33
/dev/pcan-pci:

total O

drwxr-xr-x 2 root root 80 févr. 3 14:59 0

lrwxrwxrwx 1 root root 11 févr. 13 12:05 'devid=1' -> ../pcanpcid
lrwxrwxrwx 1 root root 11 févr. 13 12:05 'devid=2' -> ../pcanpcib
/dev/pcan-pcie fd:

total O

drwxr-xr-x 2 root root 80 févr. 3 14:59 0

drwxr-xr-x 2 root root 80 févr. 3 14:59 1

lrwxrwxrwx 1 root root 13 févr. 13 12:05 'devid=10' -> ../pcanpcifd0
lrwxrwxrwx 1 root root 13 févr. 13 12:05 'devid=11l' -> ../pcanpcifdl
lrwxrwxrwx 1 root root 13 févr. 13 12:05 'devid=12' -> ../pcanpcifd2
lrwxrwxrwx 1 root root 13 févr. 13 12:05 'devid=13' -> ../pcanpcifd3
/dev/pcan-usb:

total O

drwxr-xr-x 2 root root 60 févr. 3 15:24 0

drwxr-xr-x 2 root root 60 févr. 3 15:24 1

lrwxrwxrwx 1 root root 12 févr. 3 15:24 devid=161 -> ../pcanusb35
/dev/pcan-usb fd:

total O

drwxr-xr-x 2 root root 60 févr. 3 14:59 0

lrwxrwxrwx 1 root root 14 févr. 3 14:59 devid=12345678 -> ../pcanusbfd34
/dev/pcan-usb pro fd:

total O

drwxr-xr-x 2 root root 80 févr. 3 14:59 0

lrwxrwxrwx 1 root root 14 févr. 3 14:59 devid=2 -> ../pcanusbfd32
lrwxrwxrwx 1 root root 14 févr. 3 14:59 devid=31 -> ../pcanusbfd33

Here is the content of the subdirectories created by these Udev rules, one per PC CAN interface. The tree
representation provides a better way of showing which CAN channel is connected to which PC CAN
interface:

$ tree /dev/pcan-pci
1 directory, 4 files
1 directory, 4 files

17

|PCAN Driver for Linux v8 - User Manual

PEAK

System

— 0
can0 ->
canl ->
can2 ->
can3 ->
— 1

|: can0 ->
canl ->
— devid=10 ->
— devid=11 ->
— devid=12 ->
L— devid=13 ->

S~ N N

2 directories, 10

$ tree /dev/pcan-pcie fd
/dev/pcan-pcie fd

./pcanpcifd0
./pcanpcifdl
./pcanpcifd2
./pcanpcifd3

./../pcanpcifdé6
./../pcanpcifd?
./pcanpcifd0
./pcanpcifdl
./pcanpcifd2
./pcanpcifd3

files

/dev/pcan-usb
0
L— can0 ->
1
L— can0 ->
devid=161 ->

$ tree /dev/pcan-usb

./../pcanusb35

./../pcanusb36
. ./pcanusb35

2 directories, 3 files

/dev/pcan-usb_fd
0
L— can0 ->

$ tree /dev/pcan-usb_ fd

./../pcanusbfd34
devid=12345678 -> ../pcanusbfd34

1 directory, 2 files

0
|: can0 ->
canl ->

$ tree /dev/pcan-usb pro_ fd
/dev/pcan-usb_pro_ fd

./../pcanusbfd32
./../pcanusbfd33
devid=2 -> ../pcanusbfd32

devid=31 -> ../pcanusbfd33

1 directory, 4 files

In the above configuration, a user application that wants to access to the CAN bus through the 2" CAN

port of the PCAN-USB Pro FD plugged to the host will be able to open indifferently:

 /dev/pcanusbfd33

— /dev/pcan33

— /dev/pcan-usb_pro_ fd/devid=31

 /dev/pcan-usb pro fd/0/canl

PCAN Driver for Linux v8 - User Manual u

System

ﬂ Note: With a properly configured and running Udev system, all of these devices files and directories
are generated on the fly. If the target non-RT system does not have a running Udev system, you
must create the device files manually each time after driver installation. The driver package provides
the shell script driver/pcan make devices for this. For example, to create a maximum of 2
devices of each type:

$ cd driver
$ sudo ./pcan make devices 2

4.3 /proc Interface

One of the first tests to do is to check whether the driver module is correctly loaded and runs as
expected. To so, read the /proc/pcan pseudo file.

Example:
$ cat /proc/pcan
e PEAK-System CAN interfaces (www.peak-system.com) -------—-—-—--
Mo Release YYYYMMDD n (X.Y.Z) MMM DD YYYY HH:MN:SS —————————————-
Ko mm o [mod] [isa] [pci] [pec] [dng] [par] [usb] [pcc] --—-—-—-—-—-—-
e XX interfaces @ major 249 found --—————--——————————————
*n -type- -ndev- --base-- irg --btr- --read-- --write- --irgs-- -errors- status
0 pcifd -NA- £8c21000 048 0x001lc 00000000 00000000 00000000 00000000 0x0000
1 pcifd -NA- £8c22000 048 0x001lc 00000000 00000000 00000000 00000000 0x0000
2 pcifd -NA- £8c23000 048 0x001lc 00000000 00000000 00000000 00000000 0x0000
3 pcifd -NA- £8c24000 048 0x001lc 00000000 00000000 00000000 00000000 0x0000
4 pci -NA- fdee0000 016 0x001lc 00000000 00000000 00000000 00000000 0x0000
5 pci -NA- fdee0400 016 0x001lc 00000000 00000000 00000000 00000000 0x0000
6 pci -NA- fdee0800 016 0x001lc 00000000 00000000 00000000 00000000 0x0000
7 pci -NA- fdeeOc00 016 0x001lc 00000000 00000000 00000000 00000000 0x0000
8 isa -NA- 300 010 0x001lc 00000000 000OOOOOO 0OOOO0O000 00000000 0x0000
9 isa -NA- 320 005 0x001lc 00000000 00000000 0OOOO0O000 00000000 0x0000
32 usbfd -NA- 3 030 0x001lc 00000000 00000000 00000000 00000000 0x0000
33 usbfd -NA- 3 031 0x001lc 00000000 00000000 00000000 00000000 0x0000
34 usb -NA- ffffffff 161 0x001lc 00000000 00000000 00000000 00000000 0x0000

The /proc/pcan file contains:
the driver version (release date and version numbers) with build date and time
the list of the PC CAN interfaces the driver is able to handle (see Table 1 on page 9)

the count of PC CAN interfaces detected by the driver and the major number the Linux kernel has
assigned to the driver

the table of all the CAN devices the driver has detected (one per line)

The columns of the PC CAN interfaces table are properties that are common to each interface:

Column PC CAN interface property description

n decimal value | The minor number the driver has assigned to that PC CAN interface

type pci PCI/PCle/PCC/EC based interface equipped with a physical or FPGA SJA1000 or controller
isa ISA based interface equipped with a SJA1000 controller
sp Standard Parallel interface equipped with a SJA1000 controller

19

PCAN Driver for Linux v8 - User Manual u

Column

ndev

base

irg

btr

read

write

irgs

errors

status

4.4

System

PC CAN interface property description

epp
usb
usbfd
pcifd

canx

not applicable

hexadecimal
value

decimal value

hexadecimal
value

hexadecimal
value

hexadecimal
value

hexadecimal
value

hexadecimal
value

bit mask

Enhanced Parallel interface equipped with a SJA1000 controller
USB interface equipped with a SJA1000 controller (PCAN-USB)
USB interface equipped with a CAN FD FPGA (PCAN-USB FD)
PCI/PCle based interface equipped with a CAN FD FPGA

If the netdevinterface has been selected when building the driver, this column contains the
name of the PC CAN interface for the SocketCAN layer

When the driver has been built to run in chardev mode (default mode), then this column is
meaningless

The 1/0 port used to access the PC CAN interface hardware, if it is a Parallel or an ISA interface
The I/0 base address to access the PC CAN interface hardware in the other cases

The serial number of the adapter if the PC CAN interface is an USB interface

The IRQ number attached to the PC CAN interface, if any

The device number devid set to the PC CAN interface, if the PC CAN interface is an USB
interface

The nominal bitrate set to the PC CAN interface, following the BTROBTR1 format of the
SJA1000 bitrate register

Number of CAN/CAN FD frames read from the driver by the applications that have opened
this interface

Number of CAN/CAN FD frames written to the driver by the applications that have opened this
interface

Number of interrupts counted by the driver for that PC CAN interface (when the driver has
connected a handler to an IRQ level)

Number of packets received by the driver from the USB subsystem, in case of an USB CAN
interface

Number of errors encountered by the driver for this interface. This counter handles all kind of
errors (controller error as well as driver internal errors). Some more information about errors
is given in the status column

The signification of each error bit is defined by the CAN_ERR_xxx constants defined in
/usr/include/pcan.h.

Table b: /proc/pcan columns

/sysfs Interface

ﬂ Note: This feature is new since v8.x of the driver.

For historical reasons, v8.x of the driver always handles the /proc/pcan file, but it should be considered
as deprecated and for CAN 2.0 usage only. Since v8.x, the driver also exports all the /proc/pcan
properties (and some more) to the /sysfs interface.

a) The /sys/class/pcan/version attribute exports the driver version number:

$ cat /sys/class/pcan/version
8.0.0

b) Since v8.11.0, the /sys/class/pcan/clk ref attribute exports the clock reference used by the

driver:

0

$ cat /sys/class/pcan/clk _ref

20

PCAN Driver for Linux v8 -

User Manual L

System

This numeric value corresponds to some CLOCK_xxx values defined in
/usr/include/linux/time.h:

Value Mnemonic

0 CLOCK_REALTIME

1 CLOCK_MONOTONIC

4 CLOCK_MONOTONIC RAW
7 CLOCK_BOOTTIME

Description

This clock is affected by discontinuous jumps in the system time (e.g., if
the system administrator manually changes the clock), and by the
incremental adjustments performed by adjtime(3) and NTP.

This clock is not affected by discontinuous jumps in the system time (e.g.,
if the system administrator manually changes the clock), but is affected
by the incremental adjustments performed by adjtime(3) and NTP.

Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-
based time that is not subject to NTP adjustments or the incremental
adjustments performed by adjtime(3).

Identical to CLOCK_MONOTONIC, except it also includes any time that
the system is suspended. This allows applications to get a suspend-aware
monotonic clock without having to deal with the complications of
CLOCK_REALTIME, which may have discontinuities if the time is changed
using settimeofday(2).

Table 6: clock reference used by the driver for the timestamps

c) The /sys/class/pcan directory exports the list of all the CAN interfaces it handles:

$ tree -a /sys/class/pcan
/sys/class/pcan
pcanisa8 ->
pcanisa9 ->
pcanpcid ->
pcanpcib5 -> .
pcanpcifdl0 ->
pcanpcifdl ->
pcanpcifd2 ->
pcanpcifd3 ->
pcanusb35 ->

pcanusb36 ->

pcanusbfd32 ->
pcanusbfd33 ->
pcanusbfd34 ->
version

. . .
. . . .
S~ OO N .

../devices/virtual/pcan/pcanisa8
../devices/virtual/pcan/pcanisa?9
../devices/virtual/pcan/pcanpci4
../devices/virtual/pcan/pcanpci5b
../../devices/virtual/pcan/pcanpcifd0
../../devices/virtual/pcan/pcanpcifdl
../../devices/virtual/pcan/pcanpcifd2
../../devices/virtual/pcan/pcanpcifd3
../../devices/virtual/pcan/pcanusb35
../../devices/virtual/pcan/pcanusb36
../../devices/virtual/pcan/pcanusbfd32
../../devices/virtual/pcan/pcanusbfd33
../../devices/virtual/pcan/pcanusbfd34

d) These entries have been extended to export some PCAN devices private properties, as shown
(bold) in the example below (bold-green lines properties are the same as the columns of

/proc/pcan):

nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.

$ 1s -1 /sys/class/pcan/pcanpcid/
total O

-r--r--r-- 1 root root 4096
-r--r--r-- 1 root root 4096
-r--r--r-- 1 root root 4096
-r--r--r-- 1 root root 4096
-r--r--r-- 1 root root 4096
-r--r--r-- 1 root root 4096
-r--r--r-- 1 root root 4096
-r--r--r-- 1 root root 4096
-r--r--r-- 1 root root 4096
-r--r--r-- 1 root root 4096
-r—--r—--r—-- 1 root root 4096
-rw-r--r-- 1 root root 4096
-rw-r--r-- 1 root root 4096

12:34
12:34
12:34
12:34
12:34
12:34
12:34
12:34
12:34
12:34
12:34
12:34
12:34

adapter name
adapter number
adapter_ partnum
adapter_version
base

btrObtrl
bus_state

clk drift

clock

ctrlr number
dev

devid

dev_name

Oy O O) O O O OY O) O) O O O OV

21

https://linux.die.net/man/3/adjtime
https://linux.die.net/man/3/adjtime
https://linux.die.net/man/3/adjtime
https://linux.die.net/man/2/settimeofday

PCAN Driver

—E—=T——T—==
—r—=T——-T-—=
-r--r—--r—-—
-r--r--r--
-r--r--r--
—r—=T——-T-—=
—E—=T——T-—==
-r--r—--r—-—
-r--r—--r—-—
-r--r—--r—-—
—r—=T——-T-—=
—r—=T——-T-—=
-r--r—--r—-—
drwxr-xr-x
-r--r--r--
—r—=T——-T-—=
—r—=T——-T-—=
-r--r—--r—-—
-r--r—--r—-—
-r--r—--r—-—
—E—=T——T—==
1rwXrwxrwx
-r--r—--r—-—
-r--r—--r—-—
-r--r—--r—-—
—r—=T——-T-—=
—r—=T——-T-—=
-r--r--r--
—-rw—r——-r—-—
-r--r--r--

for Linux v8

root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root
root root

HFRERRRRBRERRBRREPERBRREBRBRERREBEVRRERRERRPRHERBRRERREERRR

- User Manual

4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096

4096
4096
4096
4096
4096
4096
4096

4096
4096
4096
4096
4096
4096
4096
4096

nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.
nov.

(o W@ I o) Wo) W«) Yo) o) WX@X o) I«) W'«) W o) Y o) W o) W@) W@V o) W o) W o) W o) W o) W«) W@) W o) Mo) We) N o) W o) W)}

12
12:
12
12
12
12:
12:
12:
12:
12:
12:
12
12:
12
12
12
12:
12:
12:
12:
12
12
12:
12:
12:
12:
12
12
12
12

:34

34

:34
:34
:34

34
34
34
34
34
34

: 34

34

:34
:34
: 34

34
34
34
34

:34
:34

34
34
34
34

: 34
: 34
: 33
: 34

System

errors
hwtype

init flags

irqg

irgs

minor

ndev

nom bitrate

nom brp

nom_sjw

nom_tq

nom_tsegl
nom_tseg2

power

read

rx error_ counter
rx_fifo ratio
rx_frames counter
rx_irqgs

serialno

status

subsystem -> ../../../../class/pcan
ts_mode

tx_error counter
tx fifo ratio

tx frames counter
tx_irgs

type

uevent

write

22

PCAN Driver for Linux v8 - User Manual

e) Reading the content of all the above files will display something like that:

System

" && cat S$f; done

adapter number = 0

base = 0xfb400000
btrObtrl = 0x001lc
bus state = 0

clk drift = 0
clock = 8000000
ctrlr number = 0
dev = 510:4

devid = 4294967295
dev_name = /dev/pcané
errors = 0

hwtype = 10

irg = 77
irgs = 0
minor = 4

nom bitrate = 500000
nom brp = 1

nom _sjw =
nom_tqg = 1
nom_tsegl 1
nom tseg2 = 2
read = 0
rx_error counter = 0
rx fifo ratio = 0.00
rx_ frames counter = 0
rx irgs = 0

serialno = 4294967295
status = 0x0000

ts mode = 0

tx error counter = 0
tx fifo ratio = 0.00
tx frames counter = 0
tx irgs = 0

type = pci

uevent = MAJOR=510
MINOR=4
DEVNAME=pcanpci4
write = 0

5

N

3

$ for f in /sys/class/pcan/pcanpcid/*;
adapter name = PCAN-PCI Express

adapter partnum = IPEH-003027
adapter version = 1.4.0

init flags = 0x00000000

nom sample point = 8750

do

&& echo -n " 'basename S$f°

ﬂ Note: Depending on the CAN hardware and/or the mode the driver has been compiled, the device
node might export some more properties. For example, a CAN FD PCle device will export the
following properties (specific properties are bold):

23

PCAN Driver for Linux v8 - User Manual u

System

$ for f in /sys/class/pcan/pcanpcifdl/*; do [-f $f] && echo -n " 'basename S$f°
= " && cat $f; done

adapter name = PCAN-PCIe FD
adapter number = 0

adapter partnum = IPEH-004040
adapter version 3.5,1
base = 0x1452000

btrObtrl = 0x001lc

bus load = 0.00

bus_ state 0

clk drift = 0

clock = 80000000

ctrlr number = 1

data bitrate = 2000000

data brp =1

data_sample point = 7500
data_sjw =1

data_tq = 12

data_tsegl = 29

data_tseg2 = 10

dev = 510:1

devid = 4294967295

dev_name = /dev/pcanl
errors = 0

hwtype = 19

init flags = 0x00000004

irg = 74
irgs = 0
minor = 1

nom bitrate = 500000
nom brp = 1

nom_sample point = 8750
nom sjw = 1

nom _tqg = 12

nom tsegl = 139
nom_tseg2 = 20

read = 0

rx_dma laddr 0x£££d45000
rx_dma vaddr = 00000000£fc12492a
rx_error counter = 0

rx fifo ratio = 0.00

rx_ frames counter = 0

rx irgs = 0

serialno = 4294967295
status = 0x0000

ts mode = 2

tx _dma laddr 0xf££d44000
tx_dma vaddr 000000005£29e0£b
tx error counter = 0

tx fifo ratio = 0.00

tx frames counter = 0

tx irgs = 0

type = pcifd

uevent = MAJOR=510
MINOR=1
DEVNAME=pcanpcifdl

write = 0

f) Some of the entries are exposed with Write permission. These entries can be written but with root
privileges only:

24

PCAN Driver for Linux v8 - User Manual u

System

For example, attaching his own device number to a CAN channel is (also) possible through sysfs:

$ cat /sys/class/pcan/pcanusb32/devid

4294967295

$ echo 12 | sudo tee /sys/class/pcan/pcanusb32/devid
[sudo] password for user:

12

$ cat /sys/class/pcan/pcanusb32/devid

12

Note: Since v8.10, it is also possible to identify a CAN channel through sysfs: by writing a ms. delay
to the “led” property, then the channel LED will blink during this delay. For example, to switch the
LED of “/dev/pcanusb32” during 3 s:

$ echo 3000 | sudo tee /sys/class/pcan/pcanusb32/led

g) Since driver version 8.19, and for devices that support it, it is also possible to read the GUID
attached to the device. This GUID is a 128-bit value which, if not 0, uniquely identifies the device
itself. The GUID is a read-only value:

$ cat /sys/class/pcan/pcanusb32/device guid
1132154b-148a-42f7-b070-c3997b923e14

Note: If the “device guid” entry is not found, please contact support to update your device with
the latest firmware.

4.5 Tspcan Tool
@ Note: This feature is new since v8.x of the driver.

The 1spcan tool is a shell script based on the /sysfs interface that can be used to get an overview of the
PC CAN interfaces and CAN channels of the host.

$./lspcan --help
lspcan: list PEAK-System CAN/CANFD devices found by driver
Option:
-a | —-—all equivalent to: -i -s
-f | —--forever forever loop on devices (*C to stop)
=ln | ==lhelp display this help
-i | --info information about PCAN devices
-s | —--stats statistics about PCAN devices
-t | --title display a title line over columns
-T | —--tree tree version
--version display driver version

25

PCAN Driver for Linux v8 - User Manual u

System

The "-i" option displays static properties of devices nodes:

$./lspcan -T -t -i
dev name port irqg clock btrs bus
[PCAN-ISA 0]

| pcanisa8 CAN1 10 8MHz 500k CLOSED

| pcanisa9 CAN2 5 8MHz 500k CLOSED
[PCAN-PCI 0]

| pcanpci4 CAN1 19 8MHz 500k CLOSED

| pcanpcib CAN2 19 8MHz 500k CLOSED
[PCAN-PCIe FD 0]

| pcanpcifd0 CAN1 32 80MHz 500k+2M CLOSED

| pcanpcifdl CAN2 32 80MHz 500k+2M CLOSED
[PCAN-PCIe FD 1]

| pcanpcifd2 CAN1 33 80MHz 500k+2M CLOSED

| pcanpcifd3 CAN2 33 80MHz 500k+2M CLOSED
[PCAN-USB 0]

| pcanusb32 CAN1 = 8MHz 500k CLOSED
[PCAN-USB 1]

| pcanusb33 CAN1 - 8MHz 500k CLOSED
[PCAN-USB Pro FD 0]

| pcanusbfd34 CANl = 80MHz 500k+2M CLOSED

| pcanusbfd35 CAN2 = 80MHz 500k+2M CLOSED

On the other hand, running 1spcan with -T -t -s -f refreshes the screen every second with a detailed
view of statistics collected from all the PC CAN interfaces present on the Linux host:

PCAN driver version: 8.x.y
dev name port irg clock btrs bus %bus rx tx err
[PCAN-ISA 0]

| pcanisa8 CAN1 10 8MHz 500k CLOSED - 0 0 0

| pcanisa?9 CAN2 5 8MHz 500k CLOSED - 0 0 0
[PCAN-PCI 0]

| pcanpcié CAN1 19 8MHz 500k CLOSED - 0 0 0

| pcanpcib CAN2 19 8MHz 500k CLOSED - 0 0 0
[PCAN-PCIe FD 0]

| pcanpcifd0 CAN1 30 80MHz 500k+2M CLOSED 0.00 0 0 0

| pcanpcifdl CAN2 30 80MHz 500k+2M CLOSED 0.00 0 0 0
[PCAN-PCIe FD 1]

| pcanpcifd2 CANl1 31 80MHz 500k+2M CLOSED 0.00 0 0 0

| pcanpcifd3 CAN2 31 80MHz 500k+2M CLOSED 0.00 0 0 0
[PCAN-USB 0]

| pcanusb35 CAN1 - 8MHz 500k CLOSED - 0 0 0
[PCAN-USB 1]

| pcanusb36 CAN1 = 8MHz 1M PASSIVE - 535608 O 585
[PCAN-USB Pro FD 0]

| pcanusbfd32 CAN1 = 80MHz 500k+2M CLOSED 0.00 0 0 0

| pcanusbfd33 CAN2 = 80MHz 1M ACTIVE 10.01 1 535634 0
[PCAN-USB FD 0]

| pcanusbfd34 CANl = 80MHz 500k+2M CLOSED 0.00 0 0 0

ﬂ Note: The content of the above screen copy may change, depending on the version of the driver.

26

PCAN Driver for Linux v8 - User Manual u

System

4.6 pcanosdiag.sh Tool

Starting from v8.14, the pcan driver package includes and installs another tool named pcanosdiag.sh.
When launched with root rights, this Shell script produces a log file that takes a snapshot of the running
Linux host.

$ sudo ./pcanosdiag.sh

[sudo] password for xxx:

./pcanosdiag.sh v1.0.5

Done.

Please send /tmp/pcanosdiag-1.0.5-YYYMMDD HHMNSS.log to <support@peak-
system.com>

The output log file can be useful to assist in the diagnosis in certain situations.

4.7 read/write Interface

As described, when reading /proc/pcan, once loaded, the driver is ready to operate on the CAN
channels it has detected. For each of them, a default bitrates configuration is defined that enables to
read/write from/to the channel. In chardev mode, the read/write entries of the driver’'s chardev interface
are able to:

initialize a CAN channel
write CAN/CAN FD frames
read CAN/CAN FD frames

This (very) simple interface makes it possible to quickly check if the driver correctly works. This interface
uses a syntax made of:

1. aletter that indicates the command
2. alist of parameters for the command

Command and parameters must be separated by blank characters.

27

PCAN Driver for Linux v8 - User Manual u

Command

i

System

Parameter Description

XXXX If xxxX is a number <= 65535, then it is interpreted as a BTROBTR1
SJA1000 register value. The CAN channel is then initialized with the
corresponding bitrate value in CAN 2.0 mode only.

paraml=valuel [,param2=value2..] |If the parameter is not a number, then it is parsed as a characters string

made of a list of param=value couples. Each couple is separated from
the next one by a “,” (comma). The parameters list is:

Parameter Description

f_clock The clock to select

nom bitrate The nominal bitrate in bit/s.

nom_brp

nom_tsegl The bit timing specifications for the nominal
nom_tseg2 bitrate, as defined by ISO 11898.

nom_sjw

data_bitrate The data bitrate in bit/s. if the CAN channel is to
be initialized in CAN FD mode.

data_brp

data tsegl The bi_t timing specifications for the data bitrate,
= as defined by ISO 11898, when the channel is to

data_tseg? be initialized in CAN FD mode.

data sjw

Each value is a numeric value. Unit symbol like k or M can be used as
shortcut.

Example:
$ echo "i nom bitrate=1M" > /dev/pcanusbO

The above command initializes the pcanusb0 CAN channel to connect to
a 1 Mbit/s CAN 2.0 channel.

s id len [xx [xx ..]] Write CAN standard message id (numeric value <= 0x7ff) with 1en data
bytes valued by xx [xx].

Example:
$ echo "m s 0x123 3 01 02 03" > /dev/pcanusb0

The above command writes CAN message ID 0x123 with 3 the data bytes
“01 02 03” on the CAN bus connected to the 15t CAN port of the USB
CAN interface.

e id len [xx [xx ..]] Write CAN extended message id (numeric value <= 0x3fffffff) with 1en
data bytes valued by xx [xx].

Example:
$ echo "m e 0x123 3 01 02 03" > /dev/pcanusb0

The above command writes CAN message ID 0x00000123 with 3 the data
bytes “01 02 03” on the CAN bus connected to the 1t CAN port of the
USB CAN interface.

s id Write the CAN RTR (Remote Transmission Request) of standard id
(numeric value <= 0x7ff).
e id Write the CAN RTR (Remote Transmission Request) of extended id

(numeric value <= 0x7ff).

Same as m but asking the driver to activate the self-receive feature (if the CAN controller of the given channel can
copy an outgoing CAN frame to its own rx queue).

Same as r but asking the driver to activate the self-receive feature (if the CAN controller of the given channel can
copy an outgoing CAN frame to its own rx queue).

Same as m but asking the driver to activate the BRS feature (if the given channel is equipped with a CAN FD
controller).

Same as b but asking the driver to activate the self-receive feature (if the CAN FD controller of the given channel
can copy an outgoing CAN FD frame to its own rx queue).

Table 7: read/write interface syntax

28

PCAN Driver for Linux v8 - User Manual u

System

If reading from this interface, the user is able to receive any of the above messages, plus status (x)
messages:

Message Parameter Description
x b id len [xx [xx ..]] Bus status message indicating CAN bus state:
id Bus State
1 ACTIVE
2 WARNING
3 PASSIVE
4 BUSOFF
c id len [xx [xx ..]] Controller error/status:
id Error
5 Controller Rx queue empty
6 Controller Rx queue overflow
7 Controller Tx queue empty
8 Controller Tx queue overflow
i id len [xx [xx ..]] Internal (driver) error/status.
id Error

Driver Rx queue empty
Driver Rx queue overflow

Driver Tx queue empty

0 N oo

Driver Tx queue overflow

Table 8: Status (x) message

4.8 test Directory

The PCAN Driver for Linux package includes a test directory that contains the C/C++ sources and
Makefile enabling to quickly build and run some simple test binary applications, in order to check if the
entire chardev installation (driver and libraries) is fully operational. These test programs also are example
programs that demonstrate the usage of the driver library in a non-RT as well as in an RT environment.

The test directory applications should be built after the libraries under 1ib directory have been built and
installed. Like the driver, these libraries and applications accept non-RT and RT compilation.

The global package installation described in 3.1 Build Binaries on page 7 has built and installed those
binaries in the system. To (re-)build them (without using any RT system calls):

$ cd peak-linux-driver-x.y.z
$ make -C test

» 32-bit version:

Since driver version 8.3, a 64-bit version of the pcan driver can operate with any 32-bit application. To
build the 32-bit version of the applications stored in this test directory, you need to do:

$ cd peak-linux-driver-x.y.z
$ make -C test all32

ﬂ Note: A 32-bit version of 1ibpcan must have been built and installed first (see Making the 32-bit
version of the library on page 8). Moreover, in order to build any 32-bit application while running a
64-bit Kernel, you first need to install the gcc-multilib package. Finally, the specific 1ibpopt 32-
bit package must be installed to:

29

PCAN Driver for Linux v8 - User Manual

System

$ sudo apt-get install gcc-multilib
$ sudo apt-get install libpopt-dev:i386

» Real-time versions:

A user who wants to rebuild the RT version of these binaries will have to:

$ cd peak-linux-driver-x.y.z
$ make -C test RT=XENOMAI # Or "make xeno" since pcan 8.2

if running a Xenomai RT extended kernel, or

$ cd peak-linux-driver-x.y.z
$ make -C test RT=RTAI # Or "make rtai" since pcan 8.2

if running a RTAI extended kernel.

ﬂ Note: Users (as well as developers) of CAN-FD-specific applications can directly have a look at the
new pcanfdtst application described in 4.8.5 on page 34.

4.8.1 receivetest

This application writes all frames it receives from a given CAN 2.0 channel (only!) to stdout. This
application also demonstrates the usage of the old 1ipcan CAN 2.0 APl in both RT and non-RT
environments.

Usage:

$ receivetest --help
receivetest Version "Release 20150611 n" (www.peak-system.com)
——————— Copyright (C) 2004-2009 PEAK System-Technik GmbH ------
receivetest comes with ABSOLUTELY NO WARRANTY. This is free
software and you are welcome to redistribute it under certain
conditions. For details see attached COPYING file.
receivetest - a small test program which receives and prints CAN messages.
usage: receivetest [-b=BTROBTR1] [-e] [-7?]

{[-f=devicenode] | {[-t=type] [-p=port [-i=irqgll}}
options:
-f=devicenode path to PCAN device node (default=/dev/pcan0)
-t=type type of interface (pci, sp, epp, isa, pccard, usb (default=pci)
-p=port port number if applicable (default=1st port of type)
-i=irqg irg number if applicable (default=irg of 1lst port)
-b=BTROBTR1 bitrate code in hex (default=see /proc/pcan)
=@ accept extended frames (default=standard frames only)
-d=no donot display received messages (default=yes)
-n=mloop number of loops to run before exit (default=infinite)
-? or --help displays this help
receivetest: finished (0): 0 message(s) received

30

PCAN Driver for Linux v8 - User Manual u

System

Example:

Display up to 100 (extended and standard) messages received from the 1% CAN port of a USB interface
connected to a CAN bus at 1 Mbit/s:

‘$ receivetest -f=/dev/pcanusb32 -b=0x14 -e -n=100

ﬂ Note: The bitrate set by this program to this CAN interface is exported by the driver:

$ cat /proc/pcan | grep -e "~32"

32 usb -NA- 3 030 0x0014 00000001 00000000 00000000 00000001 0x0000
$ cat /sys/class/pcan/pcanusb32/nom bitrate

1000000

$ cat /sys/class/pcan/pcanusb32/btrObtrl

0x0014

ﬂ Note: The RT device doesn't appear under "/dev" while running an RT Linux like Xenomai or RTAI, so
RT version of CAN_Open(libpcan) removes the "/dev" prefix from the device name characters string,
while pcanfd_open(lipcanfd) DOES NOT. This workaround ONLY works with "/dev/pcanX" device
names.

4.8.2 transmitest

This application writes all the frames it finds in the given text file to the given CAN 2.0 channel (only!).
This application also demonstrates the use of the old 1ibpcan CAN 2.0 APl in both RT and non-RT
environments.

Usage:

$ transmitest --help
transmitest Version "Release 20150610 n" (www.peak-system.com)
——————— Copyright (C) 2004-2009 PEAK System-Technik GmbH ------
transmitest comes with ABSOLUTELY NO WARRANTY. This is free
software and you are welcome to redistribute it under certain
conditions. For details see attached COPYING file.
transmitest - a small test program which transmits CAN messages.
usage: transmitest filename

[-b=BTROBTR1] [-e] [-r=msec] [-n=max] [-7?]

{[-f=devicenode] | {[-t=type] [-p=port [-i=irqgll}}
filename mandatory name of message description file.
options:
-f=devicenode path to PCAN device node (default=/dev/pcan0)
-t=type type of interface (pci, sp, epp, isa, pccard, usb (default=pci)
-p=port port number if applicable (default=1lst port of type)
-i=irq irg number if applicable (default=irqg of 1lst port)
-b=BTROBTR1 bitrate code in hex (default=see /proc/pcan)
-e accept extended frames (default=standard frames only)
—-r=msec max time to sleep before transm. next msg (default=no sleep)
-n=loop number of loops to run before exit (default=infinite)
-? or --help displays this help
transmitest: finished (0).

31

PCAN Driver for Linux v8 - User Manual u

System

The file transmit.txt is given as an example in the test directory. The syntax of this file is quite
simple and follows the syntax of the write interface of the driver. The test loops the transmission of the
frames found in the input text file. The number of loops is infinite unless the -n option is specified on
command line.

Example:

Transmit 100 times all the CAN 2.0 frames described in transmit.txt to the 1° CAN port of a USB
interface connected to a CAN bus at 1 Mbit/s:

‘$ transmitest transmit.txt -f=/dev/pcanusb32 -b=0x14 -e -n=100

6 Note: The bitrate set by this program to this CAN interface is exported by the driver:

$ cat /proc/pcan | grep -e "~32"

32 usb -NA- 3 030 0x0014 00000001 00000000 00000000 00000001 0x0000
$ cat /sys/class/pcan/pcanusb32/nom bitrate

1000000

$ cat /sys/class/pcan/pcanusb32/btrObtrl

0x0014

ﬂ Note: The RT device doesn't appear under "/dev" while running an RT Linux like Xenomai or RTAI, so
RT version of CAN_Open(libpcan) removes the "/dev" prefix from the device name characters string,
while pcanfd_open(lipcanfd) DOES NOT. This workaround ONLY works with "/dev/pcanX" device
names.

4.8.3 pcan-settings

This application enables to read/write some specific values from/to the non-volatile memory of some PC
CAN interfaces. This feature is useful to the user who wants his hot-pluggable CAN interfaces to always
have the same device node name, whatever socket it is plugged on (operating systems devices
enumeration rules don't give the same number to the same device, if this device is not plugged to the
same socket/bus/port...).

Since driver version 8.8, pcan-settings allows any super user to switch specific PC CAN interfaces to
“USB Mass Storage Device” mode. This mode is used to easily upgrade these PC CAN interfaces with a
new firmware (see also 4.10 USB Mass Storage Device Mode on page 44).

Usage:

$ pcan-settings --help
Usage: pcan-settings [OPTION...]

-f, —--deviceNode='device file path' Set path to PCAN device (default:
"/dev/pcan32")

-s, —--SerialNo Get serial number

-d, —--DeviceNo[='device number'] Get or set device number

-v, —-verbose Make it verbose

-q, —--quiet No display at all

-M, --MSD Switch device in Mass Storage Device

mode (root privileges needed)

Help options:
-?, ——help Show this help message
--usage Display brief usage message

32

PCAN Driver for Linux v8 - User Manual u

System

Example:

e Get the serial number of a USB CAN interface:

$ pcan-settings -f=/dev/pcanusb32 -s
0x00000003

e Set device numbers 30 and 31 for CAN1 and CAN2 of a USB 2xCAN channels interface:

$ pcan-settings -f=/dev/pcanusb32 -d 30
$ pcan-settings -f=/dev/pcanusb33 -d 31

e Read the device numbers of CAN1 and CAN2 of a USB 2xCAN channels interface:

$ pcan-settings -f=/dev/pcanusb32 -d
30
$ pcan-settings -f=/dev/pcanusb33 -d
31

When the driver is reloaded, it reads these numbers and exports them to /sys:

$ cat /sys/class/pcan/pcanusb32/devid
30
$ cat /sys/class/pcan/pcanusb33/devid
31

Thus, Udev is notified and reads the driver’s rules. These default rules say that, if devid is not -1, then it
should be used to create a symbolic link to the true device node under a directory which name is the
adapter name. In this example, if the USB CAN interface is a PCAN-USB Pro, then two symbolic links are
created under /dev/pcan-usb pro:

$ 1s -1 /dev/pcan-usb pro

total O

drwxr-xr-x 2 root root 11 nov. 8 11:00 O

lrwxrwxrwx 1 root root 11 nov. 8 11:00 devid=30 -> ../pcanusb32
lrwxrwxrwx 1 root root 11 nov. 8 11:00 devid=31 -> ../pcanusb33

ﬂ Note: device numbers can also be defined using the sysfs interface (see /sysfs Interface on page 24).

Note: since v8.10, a device number can also be set to each CAN channel of the PCAN PCI Express /
PCAN-PCle FD cards.

4.8.4 bitratetest

6 Note: This application is kept for historical reasons only but, since bitrate values and clock selection
are now proposed by the new API to the user space, it is considered as deprecated.

This application displays the BTROBTR1 values for some well-known bitrate values. The BTROBTR1
16-bits codification is 8 MHz SJA1000-controller-specific.

33

PCAN Driver for Linux v8 - User Manual u

System

Usage:

$ bitratetest --help

bitratetest Version "Release 20150617 a" (www.peak-system.com)
——————— Copyright (C) 2004-2009 PEAK System-Technik GmbH ------
bitratetest comes with ABSOLUTELY NO WARRANTY. This is free
software and you are welcome to redistribute it under certain
conditions. For details see attached COPYING file.

bitratetest - a small test the calculation of BTROBTR1 data from PCAN.

usage: bitratetest [-f=devicenode] [-7?]
-f=devicenode - path to devicefile, default=/dev/pcan0
-? or --help - this help

bitratetest: finished (0).

4.8.5 pcanfdtst

This application enables to test the driver, since it can receive/transmit CAN 2.0/CAN FD messages
from/to all of the device nodes handled by the driver. It works in several modes:

when running in RX mode, the application writes everything received from all the opened device
nodes on the screen. It is also able to check the content of the incoming frames

when running in TX mode, the application transmits CAN 2.0/CAN FD frames on all the opened
devices and also displays any event received from them

when running in record mode, the application records the CAN 2.0/CAN FD frames in a local file
instead of transmitting them. Recording frames allows to play the same scenario several times
(see -play option below)

Moreover, this application demonstrates the usage of the new CAN FD API of the driver in both RT and
non-RT Linux. Among all the novelties, the application allows to:

specify nominal and data bitrates for CAN FD usage
select the device clock
select ISO and non-ISO CAN FD modes

demonstrate the usage of the new entry points of the new API that enable to transmit and receive
several messages at once

demonstrate the new event-based API
get and set some device specific options value
play (i.e. transmit) frames from a recorded file

Usage:

$ pcanfdtst --help
Setup CAN[FD] tests between CAN channels over the pcan driver (>= v8.Xx)

WARNING
This application comes with ABSOLUTELY NO WARRANTY. This is free
software and you are welcome to redistribute it under certain
conditions. For details, see attached COPYING file.

USAGE

34

. . _ -
| PCAN Driver for Linux v8 User Manual PEAK

MODE

FILE

OPTIONS

System

$ pcanfdtst MODE [OPTIONS] FILE [FILE...]

tx generate CAN traffic on the specified CAN interfaces

rx check CAN traffic received on the specified CAN interfaces
getopt get a specific option value from the given CAN interface(s)
setopt set an option value to the given CAN interface(s)

rec same as 'tx' but frames are recorded into the given file

For all modes except 'rec' mode:

/dev/pcanx indicate which CAN interface is used in the test.
Several CAN interfaces can be specified. In that case,
each one is opened in non-blocking mode.

'rec' mode only:

file name file path in which frames have to be recorded.

35

PCAN Driver for Linux v8 -

=l
=i

—--one-shot
—-—accept f-t
--bitrate v
--btrObtrl
--brs
--clock v
-—-debug
-—-dbitrate v
—-—dsample-pt
-—-esi

--fd-non-iso

—-—filler vi|r|i|c

--file file
==ln@lp
--id vi|rl|i

-is vi|r|i
-ie vi|r|i

User Manual

select one-shot mode

add message filter [f...t]

set [nominal] bitrate to "v" bps
bitrates with BTROBTR1 format

set BRS bit in outgoing CAN FD frames
select clock frequency "v" Hz

(maybe too) lot of display

set data bitrate to "v" bps

v define the data bitrate sample point ratio x 10000

set ESI bit in outgoing CANFD msgs
tx frame is echoed by the hw into the rx path
select CAN-FD ISO mode
select CAN-FD non-ISO mode

select how data are filled:
fixed, randomly, incrementally or by the clock
transmit data from/receive data to file
display this help
set fixed CAN Id. to "v", randomly or incr.
set fixed standard CAN Id "v", randomly or incr.
set fixed extented CAN Id "v", randomly or incr.
"v"=nb of data bytes to use for increment counter
set fixed CAN dlc "v", randomly or incr.
tx/rx "v" msgs at once

define max duration the test should run in s.
send/read "v" CAN msgs then stop
set pcan device in listen-only mode
specify the option name (getopt/setopt modes)
specify the option value (getopt/setopt modes)
specify the option size (getopt/setopt modes)
"v" us. pause between sys calls

--play-forever file same as --play but loop forever on "file"

--tx-pause-us v force a pause of "v"

-I | -—-incr v

-1 | --len v|r|i

-m | —--mul v

-M | —--max-duration v

-n v

-0 | --listen-only
—-—-opt-name v
--opt-value v
--opt-size v

-p | —--pause-us v
--play file

-P |

-q | --quiet

= | ==FtE
-—-no-rtr

-s | —--stdmsg-only
—-—-sample-pt v

-T | —--check-ts
—-—-ts-base v
—-—-ts-mode v

-u | —--bus-load

-v | —--verbose

-w | —-with-ts

+FORMAT

us. between each Tx frame
(if hw supports it)

nothing is displayed

set the RTR flag to msgs sent

clear the RTR flag from msgs sent

don't handle extended msgs

define the bitrate sample point ratio x 10000
check host vs. driver timestatmps, stop if wrong
set timestamp base [0..2]

set hw timestamp mode to v (hw dependant)

get bus load notifications from the driver
things are (very much) explained
logs are prefixed with time of day
output line format:

(s.us)

%t timestamp (s.us format)
$d direction (< or >)

%$n device node name

%1 CAN Id. (hex format)

sf flags

%1 data length

%D data bytes

(default format is:

(rx/tx def=0/1000)
play recorded frames from "file" according to MODE

System

opt-name, opt-value and opt-size parameters are only used when in getopt or setopt

mode only. These options enable to get or set devices global or specific options value (see also

int pcanfd_get_option())

36

PCAN Driver for Linux v8 - User Manual u

System

Bitrates and clock values can be expressed with ending k or M as shortcuts for factor 1,000 or
factor 1,000,000. Note that if the option —--btrObtrl is used, then bitrate and dbitrate
options value is read as a BTROBTR1 format coded value.

The unit of the pause delay between each write or read system call is the microsecond. Here,
using an m appended to a value (e.g. 56m) changes to milliseconds and an appended s to full
seconds (e.g. 7s).

The unit of the timeout-ms parameter is millisecond. Appending an s to the value switches to
seconds (e.g. 7s).

If only one PC CAN interface is given on the command line, the application runs in “blocking”
mode, that is, the application task blocks into the driver while the receive queue of the driver is
empty, or while the transmission queue of the driver is full.

If more than one PC CAN interface is given on the command line, the application does the
following:

e It runsin non-blocking mode and uses the select () system call in non-RT environment,
to be able to wait for several events at once.

e |t creates as many real-time tasks as given device nodes, to be able to wait for several
events at the same time.

The application’s default behavior is to read/write messages from/to the driver one by one. When
the --mul x option is used (with x > 1), then the application reads/writes x messages at once.

The + option is a character’s string that runs like the Linux Shell command “date”: it enables to
specify his own format of the output lines.

--ts-base option allows user to set the base of the timestamps of the frames the driver

received:
--ts-base Description
0 Timestamps are based on the host time (default)
1 Timestamps are based on the time when the device has been opened.
2 Timestamps are based on the time the driver has been loaded.

Some options (like id, 1en, incr, filler...) can be used either in tx (or rec) mode or in rx
mode:

¢ When used in tx mode, they control how the transmitted CAN frames are generated
e When used in rx mode, they control how the received CAN frames must be.

Examples:

1. Write 10 CAN 2.0 frames (with random ID and data length) each second on a bus with a bitrate of
250 kbit/s using the 2" USB CAN interface:

37

PCAN Driver for Linux v8

User Manual

System

00
00
00

00
00
00

00
00
00

$ pcanfdtst tx -n 10 -b 250k -p 1ls /dev/pcanusb33
0.429301518 /dev/pcanusb33 > BUS STATE=ACTIVE [Rx:0 Tx:0]
0.4293989212 /dev/pcanusb33 < 567 7 - 00 00 00 0O
1.4293989342 /dev/pcanusb33 < 069 ccooa 7 - 00 00 00 0O
2.4293989614 /dev/pcanusb33 < 451 7 - 00 00 00 0O
3.4293989798 /dev/pcanusb33 < 44a 3 - 00 00 0O
4.4293989995 /dev/pcanusb33 < 729 ..., 1 - 00
5.4293990176 /dev/pcanusb33 < Oba 4 - 00 00 00 00
6.4293990468 /dev/pcanusb33 < 1f2 7 - 00 00 00 0O
7.4293990660 /dev/pcanusb33 < le3 4 - 00 00 00 00
8.4293990845 /dev/pcanusb33 < 07c 0 =
9.4293991023 /dev/pcanusb33 < 054 1 - 00

/dev/pcanusb33 < [packets=10 calls=10 bytes=41 eagain=0]

sent frames: 10

00 00 00

2. Write CAN FD (non-ISO) frames with extended ID 0x123 and 24 data bytes at a nominal bitrate of
1 Mbit/s and data bitrate of 2 Mbit/s, using the 60 MHz clock of the 2" USB interface and the
1% PCl interface of the host:

60M /dev/pcanusbfd33

$ pcanfdtst tx --fd-non-iso -n 10 -ie 0x123 -1 24 -b 1M -d 2M -c
/dev/pcanpcifd0
0.001871 /dev/pcanusbfd33 > BUS STATE=ACTIVE [Rx:0 Tx:0]
0.022460 /dev/pcanusbfd33 < 00000123 .e... 24 - 00 00 00 00
00 00 00 0O
0.000000 /dev/pcanpcifd0 > BUS STATE=ACTIVE [Rx:0 Tx:0]
0.023558 /dev/pcanpcifd0d < 00000123 .e... 24 - 00 00 00 00
00 00 00 0O
0.024662 /dev/pcanusbfd33 < 00000123 .e... 24 - 00 00 00 00
00 00 00 0O
0.025754 /dev/pcanpcifd0 < 00000123 .e... 24 - 00 00 00 00
00 00 00 0O

00
00

00
00
00
00
00
00

00
00

00
00
00
00
00
00

00 00 00 00

00

00
00
00
00
00
00

00

00
00
00
00
00
00

00

00
00
00
00
00
00

00

00
00
00
00
00
00

00
00

00
00
00
00
00
00

00
00

00
00
00
00
00
00

3. Same as above but record (instead of writing) the frames into a file named “test.rec”:

$ pcanfdtst rec --fd-non-iso -n 10 -ie 0x123 -1 24 test.rec
0.022460 test.rec < 00000123 .e... 24 - 00 00 00 00 00 00 00
00 00 00 00 00 00 00
0.023558 test.rec < 00000123 .e... 24 - 00 00 00 00 00 0O 00
00 00 00 00 00 00 00
0.024662 test.rec < 00000123 .e. 24 - 00 00 00 00 00 00 00
00 00 00 00 00 00 00
0.025754 test.rec < 00000123 .e. 24 - 00 00 00 00 00 00 00
00 00 00 00 00 00 00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

4. Play file “test.rec” writing its frames every 1 s through the 1** channel of a PCAN-PCle FD on a
1Mbps CAN bus:

1.022460 /dev/pcanpcifd0 < 00000123
2.022460 /dev/pcanpcifd0 < 00000123

3.022460 /dev/pcanpcifd0 < 00000123

.e... 24 - 00 00 00 00 O
00 00 00 00 O
.e... 24 - 00 00 00 00 O
00 00 00 00 O
0 @0 24 - 00 00 00 00 O
00 00 00 00 O
0 @0 24 - 00 00 00 00 O
00 00 00 00 O

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

$ pcanfdtst tx --fd-non-iso --play test.rec -b IM -p 1ls /dev/pcanpcifd0
0.022460 /dev/pcanpcifd0 < 00000123

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

38

PCAN Driver for Linux v8 - User Manual

System

5. Read the same bus, but from the 1t USB interface:

$ pcanfdtst rx --fd-non-iso -b 1M

-d 2M -c 60M /dev/pcanusbfd32
0.001848 /dev/pcanusb32 > BUS STATE=ACTIVE [Rx:0 Tx:0]
14.761845 /dev/pcanusb32 > 00000123 .e... 24 - 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 0O OO 00 00 0O 00 00

14.764041 /dev/pcanusb32 > 00000123 .e... 24 - 00 00 00 00 00 00 00 00 00 00 0O 00

00 00 00 00 00 0O OO 00 00 0O 00 00

14.766249 /dev/pcanusb32 > 00000123 .e... 24 - 00 00 00 00 00 00 00 00 00 00 0O 00

00 00 00 00 00 0O OO 00 00 0O 00 00

6. Transmit frames but use the new entry point of the multi-messages write API. Here, the
application transmits 3 copies of the same frame:

$ /pcanfdtst tx --fd-non-iso -n 10 --mul 3 -ie 0x123 -I 4 -b 1M -d 2M -c 60M
/dev/pcanpcifd0
0.000000 /dev/pcanpcifd0O > BUS STATE=ACTIVE [Rx:0 Tx:0]
0.000283 /dev/pcanpcifd0 < 00000123 .e... 4 - 00 00 00 00
0.001426 /dev/pcanpcifd0 < 00000123 .e. 4 - 01 00 00 0O
0.002528 /dev/pcanpcifd0 < 00000123 .e. 4 - 02 00 00 00
0.003675 /dev/pcanpcifd0 < 00000123 .e. 4 - 03 00 00 00
0.005042 /dev/pcanpcifd0 < 00000123 .e... 4 - 04 00 00 00
0.006147 /dev/pcanpcifd0 < 00000123 .e... 4 - 05 00 00 00
0.007252 /dev/pcanpcifd0 < 00000123 .e. 4 - 06 00 00 00
0.008349 /dev/pcanpcifd0 < 00000123 .e. 4 - 07 00 00 00
0.009457 /dev/pcanpcifd0 < 00000123 .e... 4 - 08 00 00 00
0.010564 /dev/pcanpcifd0 < 00000123 .e... 4 - 09 00 00 00
/dev/pcanpcifd0 < [packets=30 calls=10 bytes=120 eagain=0]
sent frames: 30

When reading on the same bus, you can see that the driver has written each frame 3 times:

$ pcanfdtst rx --fd-non-iso -Db
.001802 /dev/pcanusbfd32
.714190 /dev/pcanusbfd32
.714307 /dev/pcanusbfd32
.714424 /dev/pcanusbfd32
.714540 /dev/pcanusbfd32
.714656 /dev/pcanusbfd32
.714772 /dev/pcanusbfd32
.715402 /dev/pcanusbfd32
.715518 /dev/pcanusbfd32
.715634 /dev/pcanusbfd32
.716552 /dev/pcanusbfd32
.716668 /dev/pcanusbfd32

C 00 00 00 00 CO CO CO 00 0O 0 O

1M -d 2M -c 60M /dev/pcanusbfd32

> BUS STATE=ACTIVE |[Rx:0 Tx:0]

> 00000123 .e... 4 - 00 00 00 OO
> 00000123 .e. 4 - 00 00 00 OO
> 00000123 .e. 4 - 00 00 00 OO
> 00000123 .e. 4 - 01 00 00 0O
> 00000123 .e. 4 - 01 00 00 0O
> 00000123 .e. 4 - 01 00 00 00
> 00000123 .e. 4 - 02 00 00 0O
> 00000123 .e. 4 - 02 00 00 0O
> 00000123 .e. 4 - 02 00 00 0O
> 00000123 .e. 4 - 03 00 00 00
> 00000123 .e. 4 - 03 00 00 00

ﬂ Note: The RT device doesn't appear under "/dev" while running an RT Linux like Xenomai or RTAI, so
the RT version of pcanfdtst MUST use the real name of the CAN device, that is "pcanX". There are
neither aliases nor links that Udev can make when a RT device is created.

7. Changing the device id. of a PCAN-USB FD device using the getopt/setop modes:

$ pcanfdtst getopt --opt-name 1 /dev/pcanusbfd32
/dev/pcanusbfd32 > [option=1 size=4 value=[ff ff ff ff]

/dev/pcanusbfd32 > [option=1 size=4 value=[de ad be ef]

‘$ pcanfdtst setopt --opt-name 1 --opt-value OxXEFBEADDE --opt-size 4 /dev/pcanusbfd32

39

PCAN Driver for Linux v8 - User Manual u

System

$ pcanfdtst getopt --opt-name 1 /dev/pcanusbfd32
/dev/pcanusbfd32 > [option=1 size=4 value=[de ad be ef]

8. Getting the version of the firmware running on a PCAN-USB FD adapter:

$ pcanfdtst getopt --opt-name 11 /dev/pcanusbfd32
/dev/pcanusbfd32 > [option=11 size=4 value=[00 00 02 03]

4.9 netdev Mode

If the PCAN driver for Linux has been built for SocketCAN* usage (a.k.a., in netdev mode), it is compatible
for running with some network tools as well as the CAN utilities proposed by the SocketCAN community.

ﬂ Note: Since kernel version 3.6, the netdev interface with all of the PEAK-System PC CAN interfaces is
natively included in the mainline kernel. So, there is no need to install the PCAN driver for Linux
when planning to use the SocketCAN interface in applications.

In this mode, the driver registers a “CAN network interface” for each PC CAN interface it enumerates.
Each network interface is given a name made of the prefix can, followed by a number starting from 0.

4.9.1 assign Parameter

The assign parameter of the driver (described in Table 2: Driver module parameters on page 12) allows
to break the default ascending number assignment model.

assign=peak

When loading the driver with the parameter assign=peak, the CAN network CAN interface number is
fixed to the PCAN device minor number. In this mode, canX interface defines the same PC CAN interface
as /dev/pcanX.

assign=pcanX:canY[,pcanX:canY]

Loading the driver with the parameter assign=pcanX:canY sets the name canY to the device which
name is pcanX. When selecting this mode, the assign parameter value can be a list of several

u n

assignments, each separated by a “,” (comma).

assign=devid[,peak]

When loading the driver with the parameter assign=devid, then the name of the network CAN interface
is made by using the devid value of the corresponding PC CAN interface. If the PC CAN interface does
not define any devid, then the usual (ascending) order enumeration scheme is used (as if assign= was
not used) unless assign=devid, peak is used. In that case, the CAN network number will be the same as
the PCAN device number (as if assign=peak was used).

4 Background information: https://en.wikipedia.org/wiki/SocketCAN

40

https://en.wikipedia.org/wiki/SocketCAN

PCAN Driver for Linux v8 - User Manual u

System

Note: The value of the devid property can be changed using test/pcan-settings utility (see 4.8.3
pcan-settings on page 32).

4.9.2 defclk pParameter

The defclk parameter of the driver (described in Table 2: Driver module parameters on page 12) allows
to change the default clock value of a CAN interface. Some PEAK-System PC-CAN interfaces can be
programmed to switch from one clock to another, in order to get more accurate bit-timing.

defclk=valuve

When loading the driver with the parameter defclk=value, all the PC-CAN interfaces will try to switch
from their default clock value to the given one. value is expressed in Hz. Ending letter “M” or “k” can be
used as a shortcut to “x1000000” or “x1000". For example:

defclk=12M

selects the 12 MHz clock of each PC CAN interface that can run with such a clock. If a PC-CAN interface
can't select the given clock value, then it silently ignores it. If value is 0, the default clock is unchanged.

defclk=pcanX: valueA[,pcanY: valueB]

Loading the driver with the parameter defclk=pcanX:valueA[,pcanY=valueB] defines a specific clock
value to each PC CAN interface which name is given in the characters string. For example:

defclk=pcan0:12M, pcanl:60M,pcan2:0,pcan3:24M

tells the first four PC CAN interfaces to respectively switch to their 12 MHz, 60 MHz, default and 24 MHz
clock. If any of these interfaces can’t select the given clock, then it silently ignores it.

4.9.3 ifconfig/iproute2

Both utilities configure a canX interface. While i fconfig is somewhere too old to support all of the
CAN/CAN-FD-specific features, the last versions of the iproute2 package (especially the ip tool)
includes options to setup a canX interface. Since v8, the canX interfaces exported by the pcan driver can
be configured using the ip 1ink command.

@ Note: Configuring the canX interfaces needs root privileges.

The ip tool has been modified to handle protocol-specific features of CAN and CAN FD. This simplifies
the bitrate setup of a CAN interface. The help of the tool describes its usage:

41

PCAN Driver for Linux v8 - User Manual

System

$ ip link set canO type can help
Usage: ip link set DEVICE type can
[bitrate BITRATE [sample-point SAMPLE-POINT]] |
[tg TQ prop-seg PROP_SEG phase-segl PHASE-SEGL
phase-seg2 PHASE-SEG2 [sjw SJW]]

[loopback { on | off }]

[listen-only { on | off }]

[triple-sampling { on | off }]
[one-shot { on | off }]

[berr-reporting { on | off }]

[restart-ms TIME-MS]
[restart]

Where: BITRATE =
SAMPLE-POINT

1..1000000 }
0.000..0.999 }

{

{
TQ = { NUMBER }
PROP-SEG 3= { 1..8 }
PHASE-SEG1 = 1.,.8 }
PHASE-SEG2 = 1.,.8 }
SIW = {1..4}
RESTART-MS { 0 | NUMBER }

Thus, setting the bitrate to a CAN interface is now possible using one of the following options:

bitrate bit-timing parameters set (aka sample-point, tq, prop-seg, phase-segl, phase-seg2,

sjw)

bitrate option followed by numeric value (if the kernel configuration option
CONFIG CAN CALC BITTIMING was set)

The restart-ms option defines a timer in milliseconds. After this period the CAN interface is

automatically restarted on BUS-OFF condition. If the given numeric value is 0, then the automatic restart

mechanism is disabled, thus user will have to manually do:

‘$ sudo ip link set can0O type can restart

The last and complete version of how to use the ip 1ink tool with CAN networks is available online at:

https://www.kernel.org/doc/Documentation/networking/can.txt
Examples:

Set up a PCAN netdev interface with 500 kbit/s:

‘$ ip link set canX up type can bitrate 500000

Set up a PCAN netdev CAN FD interface with 1 Mbit/s te and 2 Mbit/s of data bitrate (if

supported):

‘$ ip link set canX up type can bitrate 1000000 dbitrate 2000000 fd on

Set up a PCAN netdev CAN FD interface with 1 Mbit/s nominal bitrate and 2 Mbit/s data bitrate,

running in non-ISO mode (if supported by the device and the kernel):

42

https://www.kernel.org/doc/Documentation/networking/can.txt

. . _ -
|PCAN Driver for Linux v8 User Manual PEAK

System

‘s ip link set canX up type can bitrate 1000000 dbitrate 2000000 fd-non-iso on ‘

Note: The latest version of iproute2 package can be downloaded from:
https://www.kernel.org/pub/linux/utils/net/iproute2/
(knowing that iproute2-ss141224 v3.18 is ok)

You might use ifconfig for setting the interface UP or DOWN only:

ifconfig canX down

canX can't be used no more

ifconfig canX up

canX can be used by any application

= A

Note: loopback mode is supported since v8.10 of the driver. The below example shows how to
configure can0 to receive the echo of each frame sent as well as the frame looped back by the
controller:

$ sudo ip link set can0O up type can loopback on bitrate 500000

$ candump -x canO0

$ cansend canO 123#0011223344556677

$ candump -x canO0
Can0 TX - - 123 [8] 00 11 22 33 44 55 66 77
Can0 RX - - 123 [8] 00 11 22 33 44 55 66 77

4.9.4 can-utils

The can-utils package® contains some tools and utilities that allow transmitting and receiving CAN as
well as CAN FD messages over the PCAN netdev interfaces.

6 Note: Transmitting and receiving to/from the CAN bus through the SocketCAN network interfaces
needs these interfaces to be configured (see 4.9.3 /fconfig/iproute2 on page 41).

Examples:

 Dump CAN/CAN FD messages received from the canX interface, display timestamps:

5 Website can-utils: https://github.com/linux-can/can-utils/

L 43

https://www.kernel.org/pub/linux/utils/net/iproute2/
https://github.com/linux-can/can-utils/

PCAN Driver for Linux v8 - User Manual u

System

$ candump -t a canX

Transmit a CAN message with ID 0x123 on canx with 4 data bytes 00 11 22 33:

‘$ cansend canX 123#00112233

Transmit the same message with CAN FD (##) on canX, select the data bitrate for the data bytes
(BRS flags = 1):

| $ cansend canl 123##100112233

4.10 USB Mass Storage Device Mode

Since driver version 8.8, it is possible to switch specific PC CAN interfaces to Mass Storage Device (MSD)
mode. In this mode, the PC CAN interface appears as an external disk drive to the system. The purpose of
this mode is to facilitate the upgrade of the firmware of the PC CAN interface. Once turned into that
mode, the PC CAN interface must be off to restart in normal mode afterwards.

A PC CAN interface can be switched into MSD mode if its device nodes export the mass storage mode
file under the /sysfs tree. In the example below, the PCAN-USB adapter cannot switch into MSD mode,
while the PCAN-USB FD is able to:

$ cat /sys/class/pcan/pcanusb33/mass storage mode

cat: /sys/class/pcan/pcanusb33/mass storage mode: No such file or directory
$ cat /sys/class/pcan/pcanusbfd38/mass storage mode

0

@ Note: Reading the mass storage mode file (if it exists) always returns the character string “0".

Switching to MSD mode is only useful if the PC CAN interface firmware should be upgraded. In that case,
super user should first get a compatible firmware from the support pages of the PEAK-System website.

The user can switch a device to MSD mode in two ways:

1. With root privileges, writing 1 to the mass_storage mode file of (for example) the directory entry
that corresponds to the first device node of the PC CAN interface:

echo 1 > /sys/class/pcan/pcanusbfd38/mass storage mode

Users of sudo will have to enter the command below instead:

$ sudo sh -c “echo 1 > /sys/class/pcan/pcanusbfd38/mass storage mode”

2. With root privileges, running the pcan-settings test application:

44

PCAN Driver for Linux v8 - User Manual u

System

$ sudo pcan-settings -M -f /dev/pcanusbfd38

pcan-settings: Mass Storage mode successfully set

Please wait for the LED(s) of the USB device to flash, then, if not
automatically done by the system, mount a VFAT filesystem on the newly
detected USB Mass Storage Device "/dev/sdX".

6 Hint: the “verbose” mode gives more details that may help for the next steps:

$ sudo pcan-settings -v -M -f /dev/pcanusbfd38
pcan-settings: Mass Storage mode successfully set

The device node "/dev/pcanusbfd38" doesn't exist anymore.

Please wait for the LED(s) of the USB device to flash, then, if not
automatically done by the system, mount a VFAT filesystem on the newly
detected USB Mass Storage Device "/dev/sdX".

For example:

mkdir -p /mnt/pcan-usb

mount -t vfat /dev/sdX /mnt/pcan-usb
1s -al /mnt/pcan-usb

After a few seconds, the LED(s) of the PC CAN interface should blink, and the Kernel should detect a new
USB mass storage device:

$ dmesg | tail -15

[27207.291209] usb 2-1.3.1: USB disconnect, device number 42

[27211.354058] usb 2-1.3.1: new high-speed USB device number 45 using ehci-pci
[27211.462592] usb 2-1.3.1: New USB device found, idVendor=0c72, idProduct=0101
[27211.462596] usb 2-1.3.1: New USB device strings: Mfr=0, Product=0, SerialNumber=0
[27211.462977] usb-storage 2-1.3.1:1.0: USB Mass Storage device detected
[27211.463223] scsi hostll: usb-storage 2-1.3.1:1.0

[27212.482743] scsi 11:0:0:0: Direct-Access USB to CAN 1.0 PQ: 0 ANSI: O CCS
[27212.483167] sd 11:0:0:0: Attached scsi generic sg4 type 0

[27212.483718] sd 11:0:0:0: [sde] 2048 512-byte logical blocks: (1.05 MB/1.00 MiB)
[27212.484335] sd 11:0:0:0: [sde] Write Protect is off

[27212.484339] sd 11:0:0:0: [sde] Mode Sense: 03 00 00 00

[27212.484944] sd 11:0:0:0: [sde] No Caching mode page found

[27212.484951] sd 11:0:0:0: [sde] Assuming drive cache: write through

[27212.490199] sde:

[27212.492690] sd 11:0:0:0: [sde] Attached SCSI removable disk

In the example above, the Kernel attached the storage device sde to the newly detected USB mass
storage device with idVendor 0c72 (that is PEAK-System). If the running Linux system doesn’t
automatically mount any file system onto that storage device, then super user has to do it manually:

1. Create a mount point (/mnt/pcan-usb-£fd, for example):

‘$ sudo mkdir -p /mnt/pcan-usb-fd

2. Mount the whole storage device on that mount point:

‘$ sudo mount -t vfat /dev/sde /mnt/pcan-usb-fd

3. Check the content of the mounted device (for example):

45

PCAN Driver for Linux v8 - User Manual

System

total 830

drwxr-xr-x 2 root root
drwxr-xr-x 10 root root
-rwxr-xr—-x 1 root root 844800 avril

$ 1s -al /mnt/pcan-usb-fd

512 janv. 1 1970
4096 déc. 13 11:23
1

2015 firmware.bin

4. Remove the existing firmware file:

‘$ sudo rm -f /mnt/pcan-usb-fd/*.bin

ﬂ Note: The remove operation is purely virtual but is mandatory to let the system think that the

storage device is large enough to store the new firmware file. At that point, if the PC CAN interface is

unplugged, then it will normally restart as usual once plugged in again.

5. Copy the new firmware file:

$ sudo cp PCAN-New firmware file.bin /mnt/pcan-usb-fd

6. Unmount all mount points for the storage device:

$ sudo umount -A /dev/sdX

After a few seconds, the PC CAN interface must be power cycled to run the new firmware. Either unplug
it or switch it off, in case the PC CAN interface is powered by another source than the USB cable (like the
PCAN-USB X6, for example).

ﬂ Note: The PCAN-USB X6 adapter is equipped with 3 modules, each managing 2 CAN ports. Also, it is

necessary to perform the previous manipulation 3 times in total, using each time the first device

node of each module (CAN1, CAN3, and CANbS).

For example, if the connected PCAN-USB X6 adapter is exported by the system like that:

$ lspcan -t -T -i

dev name

[PCAN-USB X6 0]
| pcanusbfd38
| pcanusbfd39
| pcanusbfd40
| pcanusbfd4l
| pcanusbfd4?2
| pcanusbfd43

Then pcanusbfd38, pcanusbfd40, and pcanusbfd42 should all be switched to MSD mode.

Once restarted, the PC CAN interface runs the new firmware. The version of the firmware that is
embedded into a PC CAN interface (if any) can be read in the /sysfs tree. For example:

port

CAN1
CAN2
CAN3
CAN4
CANS
CANG6

irqg

clock

80MHz
80MHz
80MHz
80MHz
80MHz
80MHz

btrs

500k+2M
500k+2M
500k+2M
500k+2M
500k+2M
500k+2M

bus

CLOSED
CLOSED
CLOSED
CLOSED
CLOSED
CLOSED

3.2.0

$ cat /sys/class/pcan/pcanusbfd38/adapter version

46

PCAN Driver for Linux v8 - User Manual u

System

5 Developer Guide

As explained in 3.1 Build Binaries on page 7, the PCAN Driver for Linux can be configured to run in two
exclusive modes:

1. If built for chardev mode, the driver exports a classic open/read/write/ioctl/close character device
interface to the user space applications, while

2. if built in netdev mode, the driver exports a socket interface.
ﬂ Note: The netdev mode is not available when building the driver for real-time environment.

Building and installing the driver as described in 3.1 Build Binaries on page 7 and in 0 7o know which
variant of the driver (chardev, netdev or RT) has been built, type in the “driver” directory:

$ modinfo pcan.ko | grep -e “description:

Install Package on page 9 also builds and installs some user APl libraries that encapsulate the system
calls to the driver:

e libpcan is the good and old API which is always offering access to CAN 2.0 channels (see 5.1.1
CAN 2.0 APl on page 49)

e libpcanfdisthe new APl included in the package since version 8 of the driver. This new API
offers access to CAN 2.0 and CAN FD channels, as well as multi-messages services and status
events messaging. Since this library also includes all the entry points of 1ibpcan described in
5.1.1 CAN 2.0 APl on page 49, this library can also be linked with CAN 2.0 API applications instead
of using 1ibpcan.

Both libraries can be built for being used by real-time applications. Two RT environments can be selected
when building these libraries, knowing that both make usage of RTDM:

®» To build real-time libraries for running Xenomai real-time tasks:

$ make -C lib RT=XENOMAI # Or "make xeno" since pcan 8.2

® To build real-time libraries, for running RTAI real-time tasks:

$ make -C 1lib RT=RTAI # Or "make rtai" since pcan 8.2

5.1 chardev Mode

In this mode, the PCAN Driver for Linux creates one device node per CAN/CAN FD channel it discovers
and attaches a minor number to it (unique for the driver). Like every character mode driver, the PCAN
Driver for Linux is being attached a major number by the system.

Each device node can be opened, closed, read, and written (see 4.6 pcanosdiag.sh Tool

47

PCAN Driver for Linux v8 - User Manual u

System

Starting from v8.14, the pcan driver package includes and installs another tool named pcanosdiag.sh.
When launched with root rights, this Shell script produces a log file that takes a snapshot of the running
Linux host.

$ sudo ./pcanosdiag.sh

[sudo] password for xxx:

./pcanosdiag.sh v1.0.5

Done.

Please send /tmp/pcanosdiag-1.0.5-YYYMMDD HHMNSS.log to <support@peak-
system.com>

The output log file can be useful to assist in the diagnosis in certain situations.

read/write Interface on page 27). The main functions are implemented through the ioctl () entry point.
The architecture of the several software components of the driver package since v8 is summarized in
Figure 1 Figure 1.

The chardev mode is especially needed when one wants to take benefits of the PCAN-Basic API PEAK-
System has developed, for writing applications that can run on both Windows and Linux systems.

48

PCAN Driver for Linux v8 - User Manual

CAN 2.0 (only) application

can_appli.c #include <libpcan.h>

main ()

{
h = CAN Open();
CAN Init (h);
CAN Write (h);
CAN Read(h) ;

libpcan.h

DWORD CAN Init();

PCAN.h

libpcan.so

#define PCAN_ INIT

#include <libpcan.h>
DWORD CANiInit ()

{
ioctl (PCAN_ INIT) ;

System

CAN 2.0/CAN FD application

#include <libpcanfd.h> canfd appli.c

main ()

{
fd = pcanfd open() ;
err = pcanfd set init (£fd);
err = pcanfd send msqg(fd) ;
err = pcanfd recv msqg (fd);
pcanfd close (fd) ;

1] libpcanfd.h

int pcanfd set init ()

DWORD CAN Init();

#include <PCAN.h>
#define PCANFD SET INIT

. , | . libpcanfd.so
#include <libpcanfd.h>

int pcanfd set init()

PCAN. ko #include <pcanfd.h>
ioctl () |
case
case PCANFD SET INIT:
}
Figure 1: software components architecture
5.1.1 CAN 2.0 API

ﬂ Note: This APl is kept for backward compatibility reasons, thus these entry points are also proposed
by the new 1ibpcanfd library. But, this APl is considered as deprecated. Use the new CAN FD API
instead.

The (old) CAN 2.0 APl ioctl codes are defined by pcan.h:

#define
#define
#define
#define
#define
#define
#define
#define
#define

PCAN_INIT _IOWR (PCAN MAGIC NUMBER, MYSEQ START, TPCANInit)
PCAN_WRITE_MSG _IOW (PCAN MAGIC NUMBER, MYSEQ START + 1, TPCANMsg)

PCAN READ MSG _IOR (PCAN MAGIC NUMBER, MYSEQ START + 2, TPCANRAMsg)
PCAN_GET_STATUS _IOR (PCAN MAGIC NUMBER, MYSEQ START + 3, TPSTATUS)

PCAN DIAG _IOR (PCAN MAGIC NUMBER, MYSEQ START + 4, TPDIAG)
PCAN_BTROBTR1 _IOWR (PCAN MAGIC NUMBER, MYSEQ START + 5, TPBTROBTRI)

PCAN GET EXT STATUS IOR (PCAN MAGIC NUMBER, MYSEQ START + 6, TPEXTENDEDSTATUS)
PCAN_MSG_FILTER _IOW (PCAN MAGIC NUMBER, MYSEQ START + 7, TPMSGFILTER)

PCAN EXTRA PARAMS IOWR (PCAN MAGIC NUMBER, MYSEQ START + 8, TPEXTRAPARAMS)

49

PCAN Driver for Linux v8 - User Manual u

System

This APl enables to read and write CAN 2.0 messages (only) from/through any PC CAN interface of PEAK-
System. This API is encapsulated by the 1ibpcan library (C/C++ programs like transmitest,
receivetest, bitratetest, and pcan-settings stored in the test directory use this API). Since this
APl is always supported for CAN 2.0 access, to use this API, the application must link with -1pcan

or -lpcanfd.

The principle of this APl is to implement a CAN 2.0 channel with something like an object HANDLE used
during the whole life of the connection to the CAN bus. This API is greatly inspired of the PCAN-Light
version for Windows®©.

The library defines the following entry points:

HANDLE CAN_Open(WORD wHardwareType, ...);

This function opens a CAN 2.0 channel according to its type (PCI, USB, ISA ...) and its channel number
(or some other arguments depending on the chosen type). See the list of HW xxx symbols defined in
pcan.h to get the list of supported values for wHardwareType.

For example:

#include <libpcan.h>

/* open the 2nd CAN 2.0 PCI channel in the system (first is 0) */
HANDLE h = CAN_Qpen(HWiPCI, 1);

DWORD CAN_Init(HANDLE hHandle, WORD wBTROBTR1l, int nCANMsgType);

This function initializes an opened CAN 2.0 channel with a bitrate (expressed in BTROBTR1 SJA1000
format) and a filter set (or not set) to the extended Id of the CAN messages.

See the list of CAN_BAUD xxx and CAN_ INIT TYPE XX symbols defined in 1ibpcan.h to get the list of
supported values for wBTROBTR1 values and nCANMsgType.

For example:

#include <libpcan.h>

/* CAN 2.0 channel handle */
HANDLE h;
DWORD status;

/* initialize the CAN 2.0 channel with 500 kbps BTROBTR1, accepting extended ID. */
status = CAN Init(h, CAN BAUD 500K, CAN_ INIT TYPE EX);

DWORD CAN_Write(HANDLE hHandle, TPCANMsg* pMsgBuff);
This function writes a CAN 2.0 message to a CAN bus through an opened CAN 2.0 channel.

50

PCAN Driver for Linux v8 - User Manual u

System

For example:

#include <libpcan.h>

/* CAN 2.0 channel handle */
HANDLE h;

DWORD status;

TPCANMsg msg;

msg.ID = 0x123
msg.MSGTYPE = MSGTYPE STANDARD;

msg.LEN = 3;

msg.DATA[Q] = 0x01;
msg.DATA[1] = 0x02;
msg.DATA[2] = 0x03;

/* write standard msg ID = 0x123. with 3 data bytes 0x01 0x02 0x03
* (the function may block)

*/

status = CAN Write (h, &msg);

DWORD CAN_Read(HANDLE hHandle, TPCANMsg* pMsgBuff);

This function reads a CAN 2.0 message received from a CAN bus through an opened CAN 2.0 channel. If
no message has been received, the calling task is blocked.

For example:

#include <libpcan.h>

/* CAN 2.0 channel handle */
HANDLE h;

DWORD status;

TPCANMsg msg;

/* wait for a CAN 2.0 msg received from the CAN channel
* (the function may block)

*/

status = CAN_Read (h, &msg);

DWORD CAN_Status(HANDLE hHandle);

This function returns the status of an opened CAN 2.0 channel (corresponding to the last column
displayed with cat /proc/pcan). The returned value is a bitmask (see the list of CAN ERR xxx symbols
defined in pcan.h to get the meaning of each bit).

ﬂ Note: Reading the status of a channel with this function clears it!

51

PCAN Driver for Linux v8 - User Manual u

System

For example:

#include <libpcan.h>

/* CAN 2.0 channel handle */
HANDLE h;
DWORD status;

/* get the status of a CAN 2.0 channel */
status = CAN_Status (h) ;

DWORD CAN_Close(HANDLE hHandle);

This function closes an opened CAN 2.0 channel. The given handle should not be used next.

For example:

#include <libpcan.h>

/* CAN 2.0 channel handle */
HANDLE h;

/* wait for a CAN 2.0 msg received from the CAN channel
* (the function may block)
w

CAN Close (h) ;

To get profit from the multi-tasking environment of Linux, the library has been extended with the
following LINUX XXX () functions:

int LINUX_CAN_FileHandle(HANDLE hHandle);

This function returns the file descriptor corresponding to the device node opened by the driver. This is
useful when an application has to wait for more than one read/write event.

HANDLE LINUX_CAN_Open(const char *szDeviceName, int nFlag);

This function opens a CAN 2.0 channel, but with the Linux system device node name instead.

DWORD LINUX_CAN_Read(HANDLE hHandle, TPCANRdMsg* pMsgBuff) ;

This functions acts like “DWORD CAN_Read(HANDLE hHandle, TPCANMsg* pMsgBuff);”, but returns
extra timestamp information.

DWORD LINUX_CAN_Read_Timeout (HANDLE hHandle, TPCANRdMsg* pMsgBuff, int
nMicroSeconds);

This function acts like “DWORD LINUX_CAN_Read(HANDLE hHandle, TPCANRdMsg* pMsgBuff);”, but,
in case there is no message to read from the CAN, it blocks the calling task for nMicroSeconds at
maximum.

52

PCAN Driver for Linux v8 - User Manual u

System

DWORD LINUX_CAN_Write_Timeout(HANDLE hHandle, TPCANMsg* pMsgBuff, int
nMicroSeconds) ;

This function acts like “DWORD CAN_Write(HANDLE hHandle, TPCANMsg* pMsgBuff);”, but in case
there is no more room in the transmit queue of the CAN channel, it blocks the calling task for
nMicroSeconds at maximum.

DWORD LINUX_CAN_Extended_Status(HANDLE hHandle, int *nPendingReads, int
*nPendingwrites);

This function acts like “DWORD CAN_Status(HANDLE hHandle);”, but also returns the count of messages
waiting to be read from the receive queue of the channel in *nPendingReads, and the count of
messages waiting to be sent from the transmit queue of the channel in * nPendingWrites.

DWORD LINUX_CAN_Statistics(HANDLE hHandle, TPDIAG *diag);

This function gives some statistics about a CAN 2.0 channel but without clearing the status of this
channel (like “DWORD CAN_Status(HANDLE hHandle);” does).

WORD LINUX_CAN_BTROBTR1(HANDLE hHandle, DWORD dwBitRate);
This function returns the BTROBTR1 8 MHz SJA1000 code corresponding to the given bitrate.

5.1.2 CAN FD API

This APl is new since version 8 of the driver. It always proposes the entry points and data structures
defined in the old one (see 5.1.1 CAN 2.0 AP/ on page 49), but adds definition of some new data
structures and ioctl codes (see pcanfd.h). The old entry points always allow connecting to the CAN 2.0
bus as usual, while the new ones enable to connect to CAN 2.0 and/or CAN FD busses. In other words,
the new APl is a new, modern and universal way of accessing the CAN bus. The old entry points are only
kept for ensuring backward compatibility with existing application code.

#define PCANFD_ SET INIT _IOW (PCAN MAGIC NUMBER, PCANFD SEQ SET INIT, \
struct pcanfd init)

#define PCANFD GET_ INIT _IOR(PCAN MAGIC NUMBER, PCANFD SEQ GET INIT, \
struct pcanfd init)

#define PCANFD_GET STATE _IOR(PCAN MAGIC NUMBER, PCANFD SEQ GET STATE, \
struct pcanfd state)

#define PCANFD_ ADD FILTERS _IOW (PCAN MAGIC NUMBER, PCANFD SEQ ADD FILTERS, \
struct pcanfd msg filters)

#define PCANFD GET_FILTERS _IOW (PCAN MAGIC NUMBER, PCANFD SEQ GET FILTERS, \
struct pcanfd msg filters)

#define PCANFD_SEND MSG _IOW (PCAN MAGIC NUMBER, PCANFD SEQ SEND MSG, \
struct pcanfd msgq)

#define PCANFD_RECV_MSG _IOR(PCAN MAGIC NUMBER, PCANFD SEQ RECV MSG, \
struct pcanfd msgq)

#define PCANFD_SEND_ MSGS _IOWR (PCAN MAGIC NUMBER, PCANFD SEQ SEND MSGS, \
struct pcanfd msgs)

#define PCANFD_RECV_MSGS _IOWR (PCAN MAGIC NUMBER, PCANFD SEQ RECV MSGS, \
struct pcanfd msgs)

#define PCANFD_GET AVAILABLE CLOCKS __TOWR (PCAN MAGIC NUMBER, \

PCANFD_ SEQ GET AVAILABLE CLOCKS, \
struct pcanfd available clocks)

53

PCAN Driver for Linux v8 - User Manual u

System

#define PCANFD_GET BITTIMING_RANGES _IOWR (PCAN MAGIC_ NUMBER, \
PCANFD SEQ GET BITTIMING RANGES, \
struct pcanfd bittiming ranges)

#define PCANFD_GET OPTION _IOWR (PCAN MAGIC NUMBER, PCANFD SEQ GET OPTION, \
struct pcanfd option)
#define PCANFD_SET OPTION _IOW (PCAN MAGIC NUMBER, PCANFD SEQ SET OPTION, \

struct pcanfd option)

These new Jjoct/ codes are also encapsulated by some new entry points of the new 1ibpcanfd library.
These new entry points are defined in 1ibpcanfd.h.

ﬂ Note: The test application pcanfdtst uses these new entry points.

This new library does not anymore encapsulate CAN channels into any HANDLE objects, but directly
deals with file descriptors returned by the open () system call, made on the corresponding device node.

6 Note: The old and new APIs are not compatible! Once a CAN channel is opened through one API, it
cannot be used with the other one. In other words, opening a CAN channel selects the API that is
used for the connection.

The new API offers several levels of usage. While Level 1 encapsulates the above joct/codes, Level 2 API
offers a more friendly way of opening and closing a device node.

Finally, all of the entry points of this new API return an integer value. If it is negative, it must be
interpreted as an error code that equals to -errno.

int pcanfd_set_init(int fd, struct pcanfd_init *pfdi);

This function initializes an opened device node with some new settings that enable to select CAN 2.0 as
well as CAN FD properties (if the corresponding hardware is compatible). These properties are defined by
the new struct pcanfd init object (see also pcanfd.h):

struct pcanfd init {
__u32 flags;
__u32 clock Hz;
struct pcan bittiming nominal;
struct pcan bittiming data;

}i

Field Values Description
flags PCANFD INIT LISTEN ONLY The device is opened in listen-only mode.
PCANFD_INIT_ STD_MSG_ONLY Only standard CAN message IDs are transmitted and received. If not set, all
kinds of messages IDs are used for that device.
PCANFD_INIT FD Open the device for CAN FD ISO access if the device is CAN-FD-capable.
PCANFD INIT FD NON ISO Open the device for CAN FD non-ISO access if the device is CAN-FD-capable.
PCANFD_INIT TS_DEV_REL Timestamps set by the driver to the messages received from the CAN bus are
relative to the moment the device is initialized.
PCANFD INIT TS HOST REL Timestamps set by the driver to the messages received from the CAN bus are
relative to the moment the host has started.
PCANFD_INIT_TS_DRV_REL Timestamps set by the driver to the messages received from the CAN bus will
be relative to the moment the driver has started (default).
PCANFD_ INIT BUS_LOAD_ INFO If the CAN bus load is information the corresponding hardware is able to

provide, then the driver will periodically put STATUS messages in the rx fifo
gueue of this channel to inform the application of the current bus load the
channel is connected to.

54

PCAN Driver for Linux v8 -

Field

clock

nominal

data

Values
0

any other value
struct pcan bittiming

struct pcan_bittiming

User Manual

Description
The default clock of the CAN device is selected by the driver (default).

select the right bit timing specifications.

defined in Table 2 on page 12).

System

The clock frequency (expressed in Hz) to select in the CAN device hardware to
Defines the nominal bitrate to use to connect to the CAN bus (default value is

Defines the data bitrate to select when the device is a CAN FD one, and the

written message flag PCANFD_MSG_BRS is set (default value is defined in
Table 2 on page 12).

Table 9: struct pcanfd_init description

int pcanfd_get_init(int fd, struct pcanfd_init *pfdi);

This function enables the user application to get the initialization settings that are set to an opened

device.

int pcanfd_get_state(int fd, struct pcanfd_state *pfds);

This function gets the current state of an opened device. The state of a CAN channel is summarized in the

new struct pcanfd state object (see also pcanfd.h):

b

__ulé6

struct timeval

enum pcanfd status

_u32
_u32
_u32

__ulé6
__ule

__ule
__ulé6

_u32
_u32
_u32
_u32
_u32
_u32
_u32
_u32

__u64
__uo4

struct pcanfd state {

ver major, ver minor, ver subminor;

tv_init;

device id;

open_ counter;
filters counter;

hw_type;
channel number;

can_status;
bus_ load;

tx max msgs;

tx pending msgs;
rx max msgs;
rx_pending msgs;
tx frames counter;
rx frames counter;
tx error counter;
rx_error counter;

host time ns;
hw time ns;

/* time the device was initialized */

bus state;

/*

/*
/*

/*
/*

/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

/*
/*

/* CAN bus
device 1ID,

open ()

state */

ffffffff is unused */

counter */

count of message filters */

PCAN device type */
channel number for the device */

same as wCANStatus but NOT CLEARED */

bus load value,

Tx fifo size in
msgs waiting to
Rx fifo size in
msgs waiting to

ffff if not given */

count of msgs */
be sent */
count of msgs */
be read */

Tx frames written on device */
Rx frames read on device */
CAN Tx errors counter */

CAN Rx errors counter */

host time in nanoseconds

when hw time ns

as it was */

has been received */

int pcanfd_add_filter(int fd, struct

pcanfd_msg_filter *pf);

This function adds a message filter to the device's filters list. When a device is opened, no filters exist for
the device, that is, the application receives all message IDs read from the CAN bus. Adding a message
filter enables to filter among incoming CAN messages which are to pass to the application and which are

55

PCAN Driver for Linux v8 - User Manual u

System

to discard. The message filter is described by the new struct pcanfd msg filter object (see also
pcanfd.h):

struct pcanfd msg filter {

_u32 id from; /* msgs ID in range [id from..id to] */
_u32 id to; /* and flags == msg flags */
_u32 msg_flags; /* will be passed to applications */

b

int pcanfd_add_filters(int fd, struct pcanfd_msg_filters *pfl1);

This function adds several message filters to the device's filters list at once. The list of messages is saved
into the following struct pcanfd msg filters:

struct pcanfd msg filters ({

_u32 count

struct pcanfd msg filter 1list[O0];
i

ﬂ Note: The count field should contain the number of message filters saved in the 1ist [] array field.

int pcanfd_add_filters_list(int fd, int count, struct pcanfd_msg_filter *pf);

This function adds several message filters to the device's filters list at once. This is a shortcut easier to
use than “int pcanfd_add_filters(int fd, struct pcanfd_msg_filters *pfl);”.

int pcanfd_del_filters(int fd);

This function deletes all the filters linked to device's filters list. No filters do exist anymore for the device,
so the application will receive all message IDs read from the CAN bus. This is the default behavior of a
CAN device when it has been opened.

int pcanfd_send_msg(int fd, struct pcanfd_msg *pfdm);

This function writes a message to the CAN bus through an opened device. The message is defined by the
new struct pcanfd msg object (see also pcanfd.h):

struct pcanfd msg {

__ulé6 type; /* PCANFD TYPE xxx */

__ule data len; /* true length (not the DLC) */

_u32 id;

_u32 flags; /* PCANFD xxx definitions */

struct timeval timestamp;

__u8 ctrlr data[PCANFD CTRLR MAXDATALEN] ;

__u8 data [PCANFD MAXDATALEN] attribute ((aligned(8)));
}i

This C structure object is able to carry a CAN 2.0 as well as a CAN FD message. It also can contain some
out-of-band message types (like status messages) that can be pushed by the driver to the application.

ﬂ Note: Writing a message to the CAN bus might block the calling task, unless the device node has

been opened in non-blocking mode. In that case, ~-EWOULDBLOCK is returned by this function if the
task had not enough room to store the outgoing message.

56

PCAN Driver for Linux v8 - User Manual u

System

Field Values Description
type PCANFD_TYPE_ CAN20_MSG This message is a CAN 2.0 message (the data_len field cannot be larger than 8).
PCANFD_TYPE_CANFD_MSG This message is a CAN FD message. Bits like PCANFD MSG_BRS are handled by the
flags field. The data_ len field cannot be larger than 64.
data len <=8 Number of data bytes to copy from the data field to transmit on the CAN bus.
<=64 In case of CAN FD message, this value is the true count of bytes to write. The
driver is in charge to adapt this to the corresponding DLC code.
flags PCANFD MSG_RTR Remote Transmission Request message.
PCANFD_MSG_EXT The message ID is to be coded using 29 bits (the standard message format uses 11
bits only).
PCANFD MSG_ SLF If supported, this message is looped back by the hardware to its internal receive
queue.

Note: Depending on the hardware, this bit may or may not be set in the flags of
the looped back frame.

PCANFD MSG SNG If supported, this message is transmitted in Single-Shot mode, that is, if the CAN
frame is not transmitted successfully, no further transmissions are attempted.
PCANFD MSG BRS In case of CAN FD, this bit enables the alternate data bitrate for the transport of the

data bytes, instead of the nominal bitrate.

PCANFD_MSG_ECHO If supported, this message is written on the bus and echoed by the hardware to its
internal receive queue. Moreover, that bit is set in the echoed frame, as well as
ctrlr data[PCANFD ECHOID] that contains a copy of
ctrlr data[PCANFD ECHOID] of the sent message.

id The ID of the CAN message.

data The data bytes of the CAN message. Only the count of bytes given by data len
field is copied onto the bus.

ctrlr_data When PCANFD_MSG_ECHO is set, the 7 low order bit of

ctrlr data[PCANFD ECHOID] will be copied into
ctrlr data[PCANFD ECHOID] of the echoed frame.

Table 10: Usage of struct pcanfd_msg on the transmit side

int pcanfd_send_msgs(int fd, struct pcanfd_msgs *pfdml);

This function writes a list of messages to the CAN bus through an opened device. The message list is
defined by the new struct pcanfd msgs object (see also pcanfd.h):

struct pcanfd msgs {
_u32 count;
struct pcanfd msg 1list[0];
}i

This C structure object is able to carry several CAN 2.0 and CAN FD messages. The number of messages
to write is given by the count field. This field is also used to indicate how many messages have really
been written in the transmit queue of the device.

ﬂ Note: Writing several messages to the CAN bus might block the calling task, unless the device node
has been opened in non-blocking mode. In that case, ~-EWOULDBLOCK is returned by this function if
the task had not enough room to store the outgoing messages.

If at least one message has been successfully written in the transmit queue, then the function returns 0.
Otherwise, it returns a negative error code.

Using this function saves memory copies and constant round trips between kernel and user spaces.

57

PCAN Driver for Linux v8 - User Manual

Example:

System

#include <malloc.h>
#include <libpcanfd.h>

int fill msg(struct pcanfd msg *pm);

struct pcanfd msgs *pml;

/* allocate enough room to store 5 CAN messages */
pml = malloc(sizeof (*pml) + 5 * sizeof (struct pcanfd msqg));

pml->count = 5;

for (pml->count = 0; pml->count < 5;

pml->count ++) {

fill msg(pml->list + pml->count) ;

}

/* put all of the messages at once in the transmit queue of the device.. */

err = pcanfd send msgs (fd, pml);

if (err)

printf ("Only %u/5 msgs have been sent because of errno=%d\n",

pml->count, err)

free(pml) ;

int pcanfd_send_msgs_list(int fd, int count, struct pcanfd_msg *pfdm);

This function writes a list of messages to the CAN bus through an opened device. This is a shortcut easier
to use than “int pcanfd_send_msgs(int fd, struct pcanfd_msgs *pfdml);"”.

int pcanfd_recv_msg(int fd, struct pcanfd_msg *pfdm);

This function reads any pending message the driver might have pushed in the corresponding device
receive queue. This message can be an in band message if it contains a CAN 2.0 or a CAN FD message
received from the CAN bus, or an out-of-band message if it contains a status message.

ﬂ Note: Reading a message from the driver might block the calling task, unless the device node has
been opened in non-blocking mode. In that case, ~-EWOULDBLOCK is returned by this function if the

task didn't find any message to read.

Field Values
type PCANFD TYPE CAN20 MSG
PCANFD TYPE CANFD MSG

PCANFD TYPE_ STATUS

PCANFD TYPE ERROR MSG

data len

id

Description

This message is a CAN 2.0 message.

This message is a CAN FD message. Bits like PCANFD MSG_BRS or
PCANFD MSG ESI can also be set in the flags field.

This message is a status message, giving some more information about
the state of the CAN device.

This message is an error message read from the CAN bus. This kind of
messages ISNOT received by default (see also option

PCANFD ALLOWED MSG_ERROR in int pcanfd_set_option(int fd, int name,
void *value, int size);)

Number of data bytes in the message received from the CAN device.
Note that in case of CAN FD, this value might not be the same as the
one given on the transmission side

The ID of the CAN message.

58

PCAN Driver for Linux v8 - User Manual

Field Values

flags PCANFD MSG_RTR
PCANFD MSG_EXT
PCANFD MSG_SLF

PCANFD MSG_ SNG
PCANFD MSG BRS

PCANFD MSG ECHO

PCANFD MSG ESI
PCANFD TIMESTAMP

PCANFD HWTIMESTAMP

PCANFD ERRCNT

PCANFD_BUSLOAD

PCANFD_ OVRCNT

timestamp struct timeval

ctrlr data

data

System

Description
Remote Transmission Request message.
The message ID format is an extended one.

This message has been looped-back by the hardware to its internal
receive queue.

This message has been transmitted in Single-Shot mode.

In case of CAN FD, this bit indicates that data bitrate has been selected
for transmitting the data bytes of the received message.

This message has been echoed by the hardware to its internal receive
queue as well as written on the bus and ctrlr data[PCANFD ECHOID]
contains a copy of ctrlr data[PCANFD ECHOID] of the sent message.

CAN FD error indicator: errors detected on the CAN bus.

The timestamp field is valued with the timestamp the message has
been received.

When PCANFD TIMESTAMP is set, this flag indicates that the given
timestamp is made from the timestamp given by the hardware. If not
set, the timestamp has been built by the driver from the host time.

ctrlr data[PCANFD RXERRCNT] and
ctrlr data[PCANFD TXERRCNT] contain Rx and Tx error counters
read from the CAN controller.

ctrlr data[PCANFD BUSLOAD UNIT] contains the percentage of the
bus load computed by the hardware controller, while
ctrlr data[PCANFD BUSLOAD DEC] contains the decimal part.

ctrlr data[PCANFD RXERRCNT] containsthe number of messages
lost because the Rx queue of the driver was full.

If PCANFD TIMESTAMP is setin the flag field, then this one indicates the
moment the message has been received. If PCANFD HWTIMESTAMP is
also set, the given moment is a time made from the hardware clock. If
PCANFD HWTIMESTAMP is not set, this moment is made by the driver,
from the host current time (see also option in int pcanfd_set_option(int
fd, int name, void *value, int size);).

CAN-controller-specific data (see PCANFD MSG_ECHO, PCANFD ERRCNT
and PCANFD BUSLOAD flags above).

The data bytes of the CAN message. The count of data bytes received is
given by the data_len field.

Table 11: Usage of struct pcanfd_msg on the receive side

int pcanfd_recv_msgs(int fd, struct pcanfd_msgs *pfdml);

This function is able to read a list of messages at once from the driver device receive queue. The
messages list is defined by the new struct pcanfd msgs object (see also pcanfd.h):

struct pcanfd msgs {
__u32 count;

struct pcanfd msg list[0];

This C structure object is able to carry several CAN 2.0 and CAN FD messages. The maximum number of
messages the list is able to contain must be set in the count field. When returning from this function, the
count field is set by the driver to the real number of copied messages.

ﬂ Note: Reading several messages from the driver might block the calling task, unless the device node
has been opened in non-blocking mode. In that case, ~-EWOULDBLOCK is returned by this function if

the task didn't find any message to read.

If at least one message has been successfully read, then the function returns 0. Otherwise, it returns a

negative error code.

59

PCAN Driver for Linux v8 - User Manual u

System

Using this function saves memory copies and constant round trips between kernel and user spaces.

Example:

#include <malloc.h>
#include <libpcanfd.h>
#include <errno.h>

int process msg(struct pcanfd msg *pm)
{
switch (pm->type) {
case PCANFD TYPE CAN20 MSG:
return process CAN 2 0 msg(pm);
case PCANFD TYPE CANFD MSG:
return process CAN FD msg (pm) ;
case PCANFD TYPE STATUS:
return process status msg(pm) ;
case PCANFD TYPE ERROR MSG:
/* 1f enabled, see PCANFD OPT ALLOWED MSGS[PCANFD ALLOWED MSG ERROR] %/
return process error msg (pm) ;

}

return -EINVAL
}

struct pcanfd msgs *pml;
int i, err;

/* allocate enough room to store at least 5 CAN messages */
pml = malloc(sizeof (*pml) + 5 * sizeof (struct pcanfd msqg));
pml->count = 5;

/* waiting for these messages.. */
err = pcanfd recv msgs (fd, pml);
if (err)

exit (1) ;

/* process the received messages.. */
for (i = 0; i < pml->count; i++) {
process msg(pml->list + 1i);

}

free(pml) ;

int pcanfd_recv_msgs_list(int fd, int count, struct pcanfd_msg *pm);
This function is able to read a list of messages at once from the driver device receive queue. This is a
shortcut easier to use than “int pcanfd_recv_msgs(int fd, struct pcanfd_msgs *pfdml);”.

If the return value is positive, then it indicates the real count of messages read from the device input
queue. Otherwise, it's an error code.

int pcanfd_get_available_clocks(int fd, struct pcanfd_available_clocks *pac);

This function returns the list of all the available clocks the underlying CAN/CAN FD device can run with.
The clock is selected at the time the device is initialized (see int pcanfd_set_init(int fd, struct pcanfd_init
* HY

pfdi);).

60

PCAN Driver for Linux v8 - User Manual u

System

/* Device available clocks value */
struct pcanfd available clock ({
_u32 clock Hz;
_u32 clock src;
bi

struct pcanfd available clocks {

_u32 count;

struct pcanfd available clock list[0];
i

User is responsible to setup the "count" field with the count of items it has allocated in the "1ist[]"
array.

Example:

struct pcanfd available clocks *pac;
int i, err;

/* allocate enough room to store at least 8 clock values */
pac = malloc(sizeof (*pac) + 6 * sizeof (struct pcanfd available clock));
pac->count = 6;

/* reading the available clocks list */
err = pcanfd get available clocks (fd, pac);
if (err)

exit (1) ;

/* display all available clocks */
for (i = 0; 1 < pac->count; i++) {
printf ("clock #%u/%u: %u Hz\n", 1, pac->count, pac->list[i]);

}

free(pac);

ﬂ Note: list[0] always contains default clock value. Only CAN FD devices define more than one clock.

int pcanfd_get_bittiming_ranges(int fd, struct pcanfd_bittiming_ranges *pbtr)

This function returns the list of all the available bit timing ranges the underlying CAN/CAN FD device can
run with. The bit timings are selected at the time the device is initialized (see int pcanfd_set_init(int fd,
struct pcanfd_init *pfdi);).

61

PCAN Driver for Linux v8 - User Manual u

System

/* CAN FD bittiming capabilities */
struct pcanfd bittiming range {
_u32 brp min;

_u32 brp max;
_u32 brp inc;
_u32 tsegl min;
_u32 tsegl max;
_u32 tseg2 min;
_u32 tseg2 max;
_u32 Sjw_min;
_u32 Sjw_max;

}i

struct pcanfd bittiming ranges {

_u32 count;

struct pcanfd bittiming range list[0];
}i

User is responsible to setup the "count" field with the count of items it has allocated in the "1ist[]"
array.

Version 8.2 of the pcan driver always sets 1 in the "count" field for any CAN 2.0 device, while it sets 2 for
any CAN FD device.

Example:

struct pcanfd bittiming ranges *pbr;
int err;

/* allocate enough room to store 2 ranges */
pbr = malloc (sizeof (*pbr) + 2 * sizeof (struct pcanfd bittiming range));
pbr->count = 2;

/* reading the bit timings ranges list */
err = pcanfd get bittiming ranges (fd, pbr);

if (err)

exit (1) ;
if (pbr->count == 1)

printf ("CAN 2.0 device\n");
else

printf ("CAN FD device\n");
free (pbr) ;

int pcanfd_get_option(int fd, int name, void *value, int size);

This function enables to read the current value of an option attached to a channel device. Each channel
handles the same set of options which values are initialized once it is opened. The list of these options is
given below and may evolve over time (see also pcanfd.h).

Getting the value of an option that doesn't exist returns -EINVAL, while getting an unsupported option
(for the device) returns ~-EOPNOTSUPP. Reading the value of an option with a too small value buffer
returns —-ENOSPC.

Successfully reading the value of an option returns the number of bytes that have been copied into
value.

62

PCAN Driver for Linux v8 - User Manual

Option

PCANFD_OPT_CHANNEL FEATURES

PCANFD _OPT DEVICE ID
PCANFD OPT AVAILABLE CLOCKS

PCANFD OPT BITTIMING RANGES

PCANFD OPT DBITTIMING RANGES

PCANFD OPT ALLOWED MSGS

PCANFD OPT ACC FILTER 11B

PCANFD OPT ACC FILTER 29B

PCANFD_OPT_TIFRAME DELAYUS

PCANFD_OPT_HWTIMESTAMP MODE

PCANFD OPT DRV VERSION
PCANFD OPT FW VERSION

Size
(bytes)
4

System

Description

The value of this option is a bitmask that gives the features of an opened channel:

PCANFD_ FEATURE FD Channel is CAN-FD capable

PCANFD FEATURE IFRAME DELAYUS Delay can be inserted between frames
PCANFD FEATURE BUSLOAD Channel is able to compute bus load
PCANFD FEATURE HWTIMESTAMP timestamp are read from the device
PCANFD FEATURE DEVICEID Channel can be labeled with a user device
id.

Get the user id attached to the channel device (if supported by the channel)

Return the list of clocks available in the channel device. The value returned is of
type pcanfd_available clocks (see pcanfd.h and int
pcanfd_get_available_clocks(int fd, struct pcanfd_available_clocks *pac);.
Getting this option is equivalent to calling pcanfd get available clocks().

Give the bit timings ranges available for the channel, to specify the nominal bitrate.
These ranges depend on which CAN/CAN-FD controller the channel is equipped
with (see also int pcanfd_get_bittiming_ranges(int fd, struct
pcanfd_bittiming_ranges *pbtr).

Give the bit timings ranges available for the channel, to specify the data bitrate.
These ranges depend on which CAN-FD controller the channel is equipped with
(see also int pcanfd_get_bittiming_ranges(int fd, struct pcanfd_bittiming_ranges
*

pbtr).

The value of this option is a bitmask that describes which kind of message an
application is able to receive:

PCANFD ALLOWED MSG CAN CAN/CAN-FD frames
PCANFD_ALLOWED MSG_RTR RTR frames
PCANFD_ALLOWED MSG_EXT Extended Id.

PCANFD ALLOWED MSG STATUS STATUS messages
PCANFD ALLOWED MSG ERROR Error from the CAN bus

Get the current acceptance filter code and mask for the standard messages
received on the channel. The high-order 32-bits contain the acceptance code while
the low-order ones contain the acceptance mask.

Get the current acceptance filter code and mask for the extended messages
received on the channel. The high-order 32-bits contain the acceptance code while
the low-order ones contain the acceptance mask.

Get the value of the delay in ps that is currently inserted by the CAN controller
between each frame it sends.

Get the current mode the driver currently uses to compute the timestamps saved
into each struct pcanfd msg.

PCANFD OPT HWIIMESTAMP OFF Host time based only (even if hw is
capable).

PCANFD OPT HWTIMESTAMP ON Host time base + raw hw time offset.
PCANFD OPT HWTIMESTAMP COOKED Hosttime base + cooked hw time offset.
PCANFD OPT HWTIMESTAMP RAW Raw hardware timestamps.

Same as above but hw timestamp is fired at Start Of Frame instead of End Of
Frame:.

PCANFD OPT HWTIMESTAMP SOF ON
PCANFD OPT HWTIMESTAMP SOF COOKED
PCANFD OPT HWTIMESTAMP SOF RAW

Cooked timestamps handle clocks drift between the different clocks systems (PC,
board, USB controller...)

Raw hardware timestamps are 64-bits us timestamps given by the controller
converted into s. + ps. These timestamps ARE NOT host time related.

Get the driver version.
Get the device firmware version.

63

PCAN Driver for Linux v8 - User Manual u

System

Option Size Description
(bytes)
PCANFD_IO DIGITAL CFG 4 Get/set the configuration of the digital I/O pins of the PCAN-Chip (firmware >=
3.3.0):
1 the 1/0 pin is setup in output mode
0 the 1/0 pin is setup in input mode.

PCANFD IO DIGITAL VAL
PCANFD IO DIGITAL SET

4 Get/set the digital I/0 pins value.

4 Set the digital I/O pins to high.
PCANFD_TIO_DIGITAL_CLR 4 Clear the digital I/0 pins to low.
PCANFD_IO_ANALOG_VAL 4 Get the analog I/0 value from the PCAN-Chip.

4

PCANFD_OPT_MASS_STORAGE_MODE The value of this option is always 0 if the device is able to switch in Mass Storage
Device mode.

If the device is not able to switch in MSD mode, reading this option fails and errno
is set to EOPNOTSUPP.

PCANFD OPT DRV CLK REF 4 Get the clock reference used by the driver (see Table 6 on page 21).
PCANFD_OPT_LINGER 4 Get the maximum waiting time in ms. the driver will wait before closing the device,
while there are frames to write pending in the driver device Tx queue.
PCANFD_OPT_SELF ACK 4 Check whether controller sends ACK by itself to the frames it writes on the bus.
PCANFD_OPT_ BRS_IGNORE 4 Check whether the controller ignores received frames with BRS flag set.
Table 12

int pcanfd_set_option(int fd, int name, void *value, int size);

This function enables to set a value to an option attached to a channel device. Each channel handles the
same set of options which values are initialized once it is opened. The list of the options that can be
changed is given below and may evolve over time (see also pcanfd.h).

Setting the value of an option that does not exist, or setting an invalid value to an existing option returns
-EINVAL, while setting a value to an unsupported option (for the device) returns ~-EOPNOTSUPP.

Correctly setting a value to an option returns 0.

Option Size (in | Description

bytes)
PCANFD OPT_DEVICE_ID 4 Set a user numeric value to the channel device (if supported by the channel)
PCANFD_OPT_ALLOWED_MSGS 4 Set what kinds of message the application wants to be notified with. Once opened,

each channel is able to receive:

PCANFD ALLOWED MSG CAN CAN/CAN-FD frames

PCANFD ALLOWED MSG RTR RTR frames

PCANFD ALLOWED MSG_EXT Extended Id.

PCANFD ALLOWED MSG_STATUS STATUS messages
PCANFD_OPT_ACC_FILTER_ 11B 8 Set the current acceptance filter code and mask for the standard messages

received on the channel. The high-order 32-bits should contain the acceptance
code while the low-order ones should contain the acceptance mask.

PCANFD_OPT_ACC_FILTER 29B 8 Set the current acceptance filter code and mask for the extended messages
received on the channel. The high-order 32-bits should contain the acceptance
code while the low-order ones should contain the acceptance mask.

PCANFD OPT IFRAME DELAYUS 4 Set the value of the delay in s that should be inserted by the CAN controller
between each frame it sends, if this controller is able to.

64

PCAN Driver for Linux v8 - User Manual u

System

Option Size (in | Description
bytes)
PCANFD_OPT_HWTIMESTAMP MODE |4 Set the current mode the driver should use to compute the timestamps saved into

each struct pcanfd msg.

PCANFD OPT HWTIMESTAMP OFF Host time based only (even if hw is
capable).

PCANFD OPT HWTIMESTAMP ON Host time base + raw hw time offset.
PCANFD OPT HWTIMESTAMP COOKED Hosttime base + cooked hw time offset.
PCANFD OPT HWTIMESTAMP RAW Raw hardware timestamps.

Same as above but hw timestamp is fired at Start Of Frame instead of End Of
Frame:.

PCANFD OPT HWTIMESTAMP SOF ON
PCANFD OPT HWTIMESTAMP SOF COOKED
PCANFD _OPT HWTIMESTAMP SOF RAW

Cooked timestamps handle clocks drift between the different clocks systems (PC,
board, USB controller...)

Raw hardware timestamps are 64-bits ps timestamps given by the controller
converted into s. + ps. These timestamps ARE NOT host time related.

PCANFD_OPT_MASS_STORAGE_MODE | 4 If the device is compatible, setting a value different from 0 to this option switches
the PC CAN interface in Mass Storage Device mode.

If the device is not able to switch in MSD mode, setting this option fails and errno
is set to EOPNOTSUPP.

If the user hasn’t got root privileges, setting this option fails and errno is set to

EPERM.
PCANFD OPT_FLASH_LED 4 Makes the LED of the device blink to identify it (if it is equipped with one).
Value is the number of milliseconds the LED should blink.
PCANFD_OPT_DRV_CLK_REF 4 Set the clock reference used by the driver (see Table 6 on page 21).
PCANFD_OPT_LINGER 4 PCANFD OPT LINGER NOWAIT Task doesn’t wait for the Tx queue to be empty
before closing the device.
PCANFD OPT_LINGER_AUTO Driver automatically computes time to wait for
the TX queue to be empty before closing the
device.

Any other positive value defines the maximum waiting time in ms. before closing
the device. The default value is 1000.

PCANFD_OPT_SELF ACK 4 If 1 then requests the controller to send ACK by itself to the frames it writes on the
bus. 0 disables this option.
PCANFD OPT BRS IGNORE 4 If 1 then requests the controller to ignore received frames with BRS flag set. 0

disables this option.

Table 13

int pcanfd_open(char *dev_pcan, __u32 flags, ...);

This function is a shortcut used to open and initialize any PC CAN interface. First parameter is the name
of the device node known by the system. Second argument is a bitmask which indicates what the next
parameters of the function are, and their sequence order, as well as the PCANFD INIT xxx flags used to
initialize the CAN controller (see also 1ibpcanfd.h and pcanfd.h).

65

PCAN Driver for Li

nux v8 - User Manual

Table 14 describes the order and how each bit of the f1ags argument is interpreted:

Bit
OFD_BITRATE

OFD_SAMPLEPT

OFD_DBITRATE

OFD DSAMPLEPT

OFD_CLOCKHZ

OFD_NONBLOCKING
PCANFD INIT xxx

Example:

Description
The specification of the nominal bitrate starts with the third parameter:

If OFD_BTROBTRI is set too, then the third parameter is interpreted as a 16-bit value
respecting the BTROBTR1 SJA1000 format.

If OFD_BRPTSEGSJW is specified, then the 39, 4, 5, and 6" parameters are
interpreted as BRP, TSEG1, TSEG2, and SJW values.

If none of the above bits is set, then the third argument is interpreted as a bits-per-
second value.

Argument next to the nominal bitrate is the minimal sample point rate requested. If
not specified, the driver uses its own default value. If specified, this value must be
expressed in 1/10000th (that is, 8750 stands for 87,5 %)

The data bitrate is given in the next arguments:

If OFD_BTROBTR1 is set too, then the next parameter is interpreted as a 16-bit value
respecting the BTROBTR1 SJA1000 format.

If OFD_BRPTSEGSJW is specified, then the 4 next parameters are interpreted as BRP,
TSEG1, TSEG2 and SJW values.

If none of the above bits is set, then the next argument is interpreted as a bits-per-
second value.

Argument next to the data bitrate is the minimal sample point rate requested. If not
specified, the driver uses its own default value. If specified, this value must be
expressed in 1/10000th (that is, 8750 stands for 87,5 %)

The clock frequency (in Hz) to select in the CAN controller is given in the next
argument.

The device node is opened in non-blocking mode.

All of these flags are used to initialize the CAN device, as if it was initialized using
“int pcanfd_set_init(int fd, struct pcanfd_init *pfdi);”.

Table 14: Usage of the flags argument of pcanfd_open()

System

#include <libpcanfd.h>

int fd;

/* open the 1st CANFD channel of the PCAN-USB Pro FD and set 1Mbps+2Mbps bitrate
fd = pcanfd open ("/dev/pcanusbprofd0",

OFD BITRATE|OFD DBITRATE,

1000000,

2000000) ;

*/

int pcanfd_is_canfd_capable(int fd);

This function allows to know if an open device is able to work in CAN-FD or not. It returns 0 if the device

is not a CAN-FD device.

int pcan_set_extra_params(int fd, struct pcan_extra_params *pe);

This function encapsulates an ioctl code that exists since CAN 2.0 API. It enables to set/get some extra

parameters to/from the

device through the driver, using the following C structure (see pcan.h):

66

PCAN Driver for Linux v8 - User Manual u

System

#define PCAN SF DATA MAXLEN 64 /* New since 8.14 */

typedef struct pcan extra params {
int nSubFunction;

union {

DWORD dwSerialNumber;

BYTE ucHCDeviceNo;

BYTE ucDevData [PCAN SF DATA MAXLEN]; /* New since 8.14 */
} func;

} TPEXTRAPARAMS;

CAN 2.0 API defines these two sub functions to set/get specific parameters:

nSubFunction func Description

SF_GET_SERIALNUMBER dwSerialNumber | Get serial number from the device (is possible).

SF_GET HCDEVICENO ucHCDeviceNo | Get the user defined device number from the device flash memory.
SF_SET HCDEVICENO Set a user defined device number value into the device flash memory.

With pcan v8.14, CAN-FD API has extended this usage by including the “ucDevData” 64 bytes array field
to be able to exchange more than simple 32 bit data objects:

nSubFunction func Description

SF_GET_FWVERSION dwSerialNumber | Get firmware version of the device.

SF_GET_ADAPTERNAME ucDevData Get the commercial name of the PC CAN interface that control the device.
The driver returns a null terminated string.

SF_GET_PARTNUM Get the PC CAN interface part number. The driver returns a null terminated
string.

int pcan_init(int fd, const struct pcan_init *pi);

int pcan_read_msg(int fd, struct pcan_rd_msg *prdm);

int pcan_write_msg(int fd, const struct pcan_msg *pm);

int pcan_get_status(int fd, struct pcan_status *ps);

int pcan_get_ext_status(int fd, struct pcan_ext_status *ps);

int pcan_get_diag(int fd, struct pcan_diag *pd);

int pcan_get_btrObtrl(int fd, struct pcan_btrObtrl *pb);

int pcan_set_msg_filter(int fd, const struct pcan_msg_filter *pf);

These functions are simple clones of the existing functions of the original API (see 5.1.1 CAN 2.0 API).

67

PCAN Driver for Linux v8 - User Manual u

System

5.2 netdev Mode

The PCAN Driver for Linux is built in netdev mode, that is, with:

$ make -C driver NET=NETDEV_SUPPORT

or:

‘$ make -C driver netdev

In this case the user application can neither use the 1ibpcan nor the libpcanfd library but has to be
built over the socket APl instead. The programmer can access the online documentation, starting, for
example, at these links:

https://en.wikipedia.org/wiki/SocketCAN

https://www.kernel.org/doc/Documentation/networking/can.txt

68

https://en.wikipedia.org/wiki/SocketCAN
https://www.kernel.org/doc/Documentation/networking/can.txt

	Front Page
	Relevant Products
	Imprint
	1 Disclaimer
	2 Introduction
	2.1 Features
	2.2 System Requirements
	2.3 Scope of Supply

	3 Installation
	3.1 Build Binaries
	3.2 Install Package
	3.3 Configure Software
	3.4 Configure Non-PnP-Hardware

	4 Usage of the Driver
	4.1 Driver loading
	4.2 Udev Rules
	4.3 /proc Interface
	4.4 /sysfs Interface
	4.5 lspcan Tool
	4.6 pcanosdiag.sh Tool
	4.7 read/write Interface
	4.8 test Directory
	4.8.1 receivetest
	4.8.2 transmitest
	4.8.3 pcan-settings
	4.8.4 bitratetest
	4.8.5 pcanfdtst

	4.9 netdev Mode
	4.9.1 assign Parameter
	4.9.2 defclk Parameter
	4.9.3 ifconfig/iproute2
	4.9.4 can-utils

	4.10 USB Mass Storage Device Mode

	5 Developer Guide
	5.1 chardev Mode
	5.1.1 CAN 2.0 API
	5.1.2 CAN FD API

	5.2 netdev Mode

