23.9.2024

PEAK-SYSTEM TECHNIK GMBH

PCAN-Basic Parameters Description

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Index

INDEX c.vvucvreeneeescesesseasassssssssesssassssssesstasssssnssssssassnssssssssstasssssassssssssstasssssesssssstassassssssssstassassssssssstassasssssssssnssases 2
INTRODUCTION ... cuveeeecescsssassasessssssstasssssssssssssassasssssssssssssassasssssssssasssssossessssassasssssssssassassssessesassassssessssassases 4
SUPPORTED PCAN-PARAIMETERSvueeuerrimeecescsessesssssssssssssssssssssssssstsssssssssssssssssssssssstassassassssssssssssssssssssassacs 5
PARAMETERS GROUPS ...vuuiivttetiretieeettieeertttertttesesaeesssnserssaesssaseesssnsssssnserssaseesssneessssnserssssessssneesssnnserssnnesssnneesssneees 6
PRE-INITIALIZED PARAMETERS . .ttt ttuttuttuttnttntensensensensesessensensenstnsensssssssnssnsenstssensssesssnstnsensessessssnstesenetnsereessesessnsensens 7
IDENTIFYING A HARDWARE.........vuveieriaeeseesssssssssssssssssssssssssssssssssassasssssssssssassasssssssssassssssssessssassasssssssessssases 8
PCAN_CHANNEL_CONDITIONveeveeeereveeeeseeesssesseesesesesesesesesesenes 8
PCAN_CHANNEL_IDENTIEYING ..o eeee s eeeseeeseeeseeeseesesess e sssessese e es s es et eesssesseesseeeseeesesesesesesesene 10
PCAN_DEVICE_ID c.verveeveeeereeeseeeseeeseseseeese s sesssesssesesesesessessesesessseseseeessessees s ee s es s esseesses s esseessessessesesesssesesesene 11
PCAN_HARDWARE_INAME ... veoeveeeeeeeeeeeseeeseeesseesseeseeesseeessesseessseseses e ss s ssess e es et eeeseesssesseess st eesseseseeesesesene 13
PCAN_CONTROLLER_NUMBERveeveeeeeeeseeeseeeseeeseeeseeseseeessesesesesesesesesses s essessses et et es st sesseesssesesesssesssesene 16
PCAN _IP_ADDRESSeoveoveeeeeeeseeeeeeeeeeeseeeseeeeseessseesseseseesseee s sseeeseese s es e ss e seess e es et eeseees et eess et eesseseseesesesene 19
PCAN_ATTACHED_CHANNELS ..o eeseeeeeeeseeeeeeeseeseeeesesesesesesseesseeseeeseessesssesseesseessesseesssesseesseesesesssesssesene 20
PCAN_DEVICE_PART_NUMBERveoveeeeeeeseeeeeeeeseeeseeseeeeseeesseeseesseess s sseess s ssess s es st eesseesssesseesseessaessesesesssesesene 22
PCAN_DEVICE_GUID w.ververveeeeseeeseeeeeseseeese e seeesesesesesesesesseeseeeseseseeesese s es s es s eesee s es et ses s esseessessessesesessesesesene 24
USING INFORMATIONAL PARAMETERSucvuiusiaieescssssssssssssssssssassssssssssssassssssssssssssasssssssssassasssssssssassasses 26
PCAN_API_VERSION ...eoverveeeereeeseeeseseseseseeesesseesesesesesssessesseeesessseeesesessesssessees s ee s es et sesseesseessessessesssessessresene 26
PCAN_CHANNEL_VERSION ...eoveoeeeeeeeeeseeeseeesseeseeesseesseeeseesssesseesssesesssess e ssese s esseseseseeessesseesseesseesseseseessesesenn 27
PCAN_CHANNEL_FEATURES «......eoveoeeeeeeeeeeeeeeeeeee e es e eeeees s es e ee e se e ss e es e s se e es e ss e es e sssess e es e ss e sseeeseesseesenn 28
PCAN_BITRATE_INFO ...veoveeeeseeeseeeeeeeseeeseeeseeesseesseeseseseessssaesseesesessess s es e ss s eseese et seeseeeseesssees st eeeseeeseseseeesesesene 30
PCAN_BITRATE_INFO_FD ..o ee s ss e se s se e es s es e ssees s ss e eseeesesseesene 31
PCAN_BUSSPEED_NOMINAL w.coeoveeeeeeeeeeeseeeseeeseeesseseeeeseesssesseeessese s ss e ssessese e esses et eesssessaeesesesseesesesesesesesene 33
PCAN_BUSSPEED._ DATA w...eoveeeeeeeeeeeeeeee e eees e es e se s se e s es e es s es e sseess e ss e ss e sseeeseesseesene 35
PCAN_LAN_SERVICE_STATUS ...eeveeeeeeeeeeeseeesseeseeeseeesseesseesssesseesssesssessses s ssessess st eeseessseeseeeseesseessesesesesesesene 36
PCAN_FIRMWARE_VERSIONcoveoveeeeeeeeeeeeeeeeeeeee e seeeesee s esee s e ss e ss e ss e es e ss e es st eesseesseesseesseesseesseseseesseeesene 38
PCAN_ATTACHED_CHANNELS_COUNT w.coveoveeeereeeeeseeeeseees e esessessessess e ssess e esssseeseesseess st eesseessesesesesesesene 39
PCAN_LAN_CHANNEL_DIRECTION w...eoveeeeeeeeeeeeeeeeeseeeesee s esee e se e ss e ss e es e ss e es e eseees e sseess e eseesseesseeeseessesesene 41
USING SPECIAL BEHAVIORSceveeniesiaiasessssssssssssssssssssssassssssssssssasssssssssssssassasssssssssassasssssssssassasssssssssassasses a3
PCAN_SVOLTS_POWERoeoveeeeeeeeeeeeeeeeeeeeeeeeeeee e ee s es e e es e es e se e se e se e esese e ss e sseeeseeeseesseesseesseesseseseeeseessene 43
PCAN_BUSOFF_AUTORESET «..ooveoveeeeeeeeeeeseeese e eessseseeeessesssesseessseseseessess s esees et sesseseeessesssesssesssessesesseesesesene 44
PCAN_LISTEN_ONLY «..ooveoveeeeeeeeeeeeeeeeeee e eeeees e eeee e se e s ee e es e sseese s ss e ss e esess e es e eseeseesseesseesseesseesseseseeesesesene 46
PCAN_BITRATE_ADAPTING.....eoveeveeeeseeeseeeseeeseeeseeeseeeseessssesssesssesssesesessess s esees et seesseseess st eesseessseesesesseesesesene 48
PCAN_INTERFRAME_DELAY ... ee s eees e es e es e se e ss e se e es e ss e es s seeeseesseesseeeseesseesseseseesseessene 50
PCAN_HARD_RESET _STATUServeeeeeeereeeseeesseesseesseeseeesseesssesssssssesssesssssessess s esseesssssesssessesesesesssesesesesesesesene 51
CONTROLLING THE DATA FLOW ..c.uceuvrierieincesssessassassesssssssssassssesssassassossessesassans 54
PCAN_RECEIVE_EVENT 1ot eeeeeeeseeese s eeeseeessesesesessesseseseseseessess s es s es s esses s es et seseess st et sesseesesessseseeesene 54
PCAN_IMESSAGE_FILTEReoveoeeeeeeeeeeeeeeee s eees e eseees e ee e ss e se e se e ss e esess e es e eseees e sseesseeeseesseesseseseesseeesene 56
PCAN_RECEIVE_STATUS w..oveoveeeereeereeeseeeseseseeesseesseessseseesessesesesesssesess s esesss s esses et seesseeseesssesssessseessesseeesaeesesesene 58
PCAN_ALLOW _ STATUS_FRAMESeoeeeeeeeeeeeeeeeeeeeeseeeeeeees e ssee s se e ssese e sseess e ss st eesseess st eesseesseessesesesesesesene 60
PCAN_ALLOW _ RTR_FRAMES ... veoeeeeeeeeeeeeeeeeeeeeee e se s es e eseeseeese e ss e ss e eseess e esseeseeeseess st eeseeeseessesesesesesesene 62
PCAN_ALLOW_ ERROR_FRAMESc.veoeeeeeseeeseeeseeesseeseeesseessssseesesesesesssess s ssess et ses et sees st seesseesaessesesssesesesene 63

PCAN_ALLOW_ECHO_FRAMESo ittt 65

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

PCAN_ACCEPTANCE_FILTER _LIBIT 1eeeieeiieiciiieeieeeeeiiiteeeeeeseseirareeeseseseastaneeesesesasssssanesesssssssssessesssssssnsseneesssennns 67
PCAN_ACCEPTANCE_FILTER _29BIT ..ceiiiiieiittttete ettt e e e e ettt e e e e e sttt e e e e e e seasstteeeeeeseaanbeeeeeessesanseeaeaeesanann 69
USING LOGGING PARAMETERSceeuiiiiteiertiniereneierennseereenseereassessenssesssnssesssnssesssnssssssnssssssnssssssnssessansssssanssses 72
PCAN_LOG_LOCATION ...etiiietieeeitttee e e e ettt et e ettt e e e e s e s be et e e e e s e s aba b teeeeeesaaussbeaaeeeesaassnbbaaeeessasnnbbaaeaeesanan 72
PCAN _LOG _STATUS .. ieiiieet ettt e e s e et e e e e e s e st e e e e e e s e s et e aeeeeeeesaassaaaeeeeeesanssssaaeeeessasssssaeeeasssansstnnneeessannns 74
PCAN_LOG_CONFIGUREcetiiiiiiiitiet ettt ettt et e e ettt e e e e e s e bbbt e e e e e e saasb b teeeeeesenasnbeeeeeesseannnsbaaeaeesanaan 75
[0 N O T I =5 PP PPRRN 76
USING TRACING PARAIMIETERScutteiieeiitenereeerencreescensceensersssssnsesessssnsessssssssssssssssssssnsessssssnsesassesnsesansesnnsnnne 79
PCAN_TRACE_LOCATION ettt et iicttttee e e e eetttee e e e e sesttaee e e e e sesasbaaeeeaesessasssaneeeesesassssaaeeeessasssssnneeasssassssssnnsesssnnnns 79
PCAN _TRACE _STATUS ettt ettt ettt et ettt e e e e e s et ettt e e e e e s e aba bt eeeeeesaassbeaeeeeesaassnbeeaeeessennnbaaaeaeesanaan 81
PCAN_TRACE_SIZE ...ttt ettt ettt e e e e ettt e e e e e e e e st bt e e e e e eeseasbaaaeeeeeesanssstaaeeeeesassnetaaeeasssansstaaneaeesanas 83
PCAN_TRACE_CONFIGURE ..cceitiiiiiiiitiet ettt e ettt et e s ettt e e e s e sttt e e e e e e sasababaaaeesesanssnbaaaeeessasssnsaaaeaeesanans 84
USING ELECTRONIC CIRCUITS PARAMETERS......ccccitttteeerennneerennseerensseerenssesrenssessenssesssnssesssnssesssnssssssnsssssnssenee 88
PCAN_IO_DIGITAL_CONFIGURATIONititittee e eeiiiite e e e e se sttt e e e s e seataaeeeeeeesasssstaaeeeessesssssaeseasssessssssnneeessenas 88
PCAN_IO_DIGITAL _VALUE ..ttt ettt et e e e sttt e e e e e s bbbt e e e e e e saabbbaeaeeeesassnbaaaeesssassntaaaeaeesanans 89
PCAN IO DIGI T AL _SET cettttiiiieeiieiiiietee e e e eerttte e e e e e se st taaeeeeesessasbasaeeeeeesassasaaeeeeesaassstaaeseessasssstaneeesssanssstannsesesennas 91
PCAN_IO_DIGITAL_CLEAR ..ottt ettt e sttt e e e s e sttt e e e e s e s bbbt e e e e e e sasabsbaaaeeessassnbaaaeesssansssaaaeasesanns 92
PCAN_IO_ANALOG_VALUE ...ttt ettt e e e e sttt e e e e e e sttt e e e e e e e sensabtaaeeeeesasnstaaeeaessansnstaaneasesannns 94
APPENDIX A: DEBUG-LOG OVER REGISTRYcccuiiiitmniiiennieiiennieniensieniensienssnsiesssnssesssnsssssssssssssssssssnnsssssnnsssssnnnss 96
ACTIVATING A LOG SESSION....ccciiiiiiiiiiieiieieeeee ettt ettt e et e e e et et et e e e e et e e et et e e et eeeeeeeeeeeeeeaeaeees 96
DEACTIVATING A LOG SESSION ...vvvuvuvururerusssssssssssssssssesssnsssssssnne 96
VERY IMPORTANT INOTE ..ottt e e e e e e e e a e e e e e eeeees 96
APPENDIX B: PCAN-TRACE FORIMMAT 1.1ciitiuiiiiennciienneriensiessenssessanssssssnssesssnssssssnssssssnsssssnnsssssnnsssssnnssssannnns 97
EXAMPLE 1vuueeeeeeetttiieeeeeeeeettt e eeeeeseesauaaseeeessasasanseeessssssnnnnseeessssssnnnnseeessssssnnsnseesssssssnnseseesssssssnnsesessssssnnnneesessessnnnnn 97
DIESCRIPTION .vtvvuvevusssesesssssssssssssasssnsnsnsnsnssnnnnne 97
APPENDIX C: PCAN-TRACE FORMAT 2.0 ...ccucttteurerreennerrennsereensersenssessenssessssssessssssesssnsssssssssssssssssssnnssssssnsssssnnsns 99
EXAIMPLE ..vvvvtttvetetesesesssssesesesssssssssssssesssnsssssnsnsssnnnsnnnnnne 99
DESCRIPTION ...eeeettttueeeeeeeersuuneeeersessssenasesessssssnenaseeessssssnnnseesssssssnnsasesssssssssnsesessssssssnnsesessssssssnnsesessssssnnnseesesssssnnnns 99
APPENDIX D: ACCEPTANCE CODE AND MASK CALCULATION.....cccceettemnerrennerrennersensesssnssessenssssssnsssssanssssanne 101
(0] 5] ORIt 101

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Introduction

The number of configurable parameters within the PCAN-Basic has been growing recently. It is
sometimes difficult to figure out when you need to use a specific parameter or how it works.
Additionally, there are some parameters that support a pre-initialized behavior. What is the intention
of those parameters? We will try to answer questions like this, and more, in this documentation.

Take into consideration that this documentation is based on the PCAN-Basic API, version 4.6.0.
Please check your APl version and, if necessary, update it.

Please Note: Not all parameters mentioned in this documentation are applicable to all Peak-Devices
that can be used with PCAN-Basic.

Due to the universal nature of the APl some parameters are only usable on certain items of our
product-line. Please refer to the user-manual of your device to see if the feature the parameter
refers to is supported.

The changes history that the APl has experienced since its first release can be found in our website at
http://www.peak-system.com/PCAN-Basic.126.0.html.

If you want to easily keep informed about our products, for example new releases of our free API
PCAN-Basic, you can subscribe to our RSS-Feed or you can visit our support website at
http://www.peak-system.com/Support.55.0.html.

@

http://www.peak-system.com/PCAN-Basic.126.0.html
http://www.peak-system.com/newsticker/PEAK-System_RSS-Feed.xml
http://www.peak-system.com/Support.55.0.html

PEAK-System Documentation

Supported PCAN-Parameters

PCAN-Basic currently supports 28 parameters that can be read/configured using the functions
CAN_GetValue/CAN_SetValue. Not all parameters can be configured because some of them are
read-only parameters. Following you will find a list with the parameters and their associated value:

e PCAN DEVICE ID 1

e PCAN 5VOLTS POWER 2

e PCAN RECEIVE EVENT 3

e PCAN MESSAGE FILTER 4

e PCAN API VERSION 5

e PCAN CHANNEL VERSION 6

e PCAN BUSOFF AUTORESET 7

e PCAN LISTEN ONLY 8

e PCAN LOG LOCATION 9

e PCAN LOG STATUS 10
e PCAN LOG CONFIGURE 11
e PCAN LOG TEXT 12
e PCAN CHANNEL CONDITION 13
e PCAN HARDWARE NAME 14
e PCAN RECEIVE STATUS 15
e PCAN CONTROLLER NUMBER 16
e PCAN TRACE LOCATION 17
e PCAN TRACE STATUS 18
e PCAN TRACE SIZE 19
e PCAN TRACE CONFIGURE 20
e PCAN CHANNEL IDENTIFYING 21
e PCAN CHANNEL FEATURES 22
e PCAN BITRATE ADAPTING 23
e PCAN BITRATE INFO 24
e PCAN BITRATE INFO FED 25
e PCAN BUSSPEED NOMINAL 26
e PCAN BUSSPEED DATA 27
e PCAN IP ADDRESS 28
e PCAN LAN SERVICE STATUS 29
e PCAN ALLOW STATUS FRAMES 30
e PCAN ALLOW RTR FRAMES 31
e PCAN ALLOW ERROR FRAMES 32
e PCAN INTERFRAME DELAY 33

e PCAN ACCEPTANCE FILTER 11BIT 34
e PCAN ACCEPTANCE FILTER 29BIT 35
e PCAN IO DIGITAL CONFIGURATION 36
e PCAN IO DIGITAL VALUE 37
e PCAN IO DIGITAL SET 38

L

PCAN - Parameters | ver. 3.0

PCAN IO DIGITAL CLEAR 39
PCAN IO ANALOG VALUE 40
PCAN FIRMWARE VERSION 41
PCAN AVAILABLE CHANNELS COUNT 42
PCAN AVAILABLE CHANNELS 43
PCAN ALLOW ECHO FRAMES 44
PCAN DEVICE PART NUMBER 45
PCAN HARD RESET STATUS 46
PCAN LAN CHANNEL DIRECTION 47
PCAN DEVICE GUID 48

Parameters Groups
In order to delimit the purpose of the different parameters, they are arranged in 5 groups as:

Parameters for “Hardware ldentification”:

PCAN

CHANNEL CONDITION

PCAN

DEVICE 1D

PCAN

HARDWARE NAME

PCAN

CONTROLLER NUMBER

PCAN

CHANNEL IDENTIFYING

PCAN

IP_ADDRESS

PCAN

AVAILABLE CHANNELS

PCAN

DEVICE PART NUMBER

PCAN

DEVICE GUID

Parameters for “Informational” purposes:

PCAN

APl VERSION

PCAN

CHANNEL VERSION

PCAN

CHANNEL FEATURES

PCAN

BITRATE INFO

PCAN

BITRATE INFO FD

PCAN

BUSSPEED NOMINAL

PCAN

BUSSPEED DATA

PCAN

LAN SERVICE STATUS

PCAN

FIRMWARE VERSION

PCAN

AVAILABLE CHANNELS COUNT

PCAN

LAN CHANNEL DIRECTION

Parameters for “Influencing Behavior”:

PCAN

5VOLTS POWER

PCAN

BUSOFF AUTORESET

PCAN

LISTEN ONLY

PEAK-System Documentation

")

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

e PCAN BITRATE ADAPTING
e PCAN INTERFRAME DELAY
e PCAN HARD RESET STATUS

Parameters for “Data Reading and Flow Control”:

e PCAN RECEIVE EVENT

e PCAN MESSAGE FILTER

e PCAN RECEIVE STATUS

e PCAN ALLOW STATUS FRAMES
e PCAN ALLOW RTR FRAMES

e PCAN ALLOW ERROR FRAMES

e PCAN ALLOW ECHO FRAMES

e PCAN ACCEPTANCE FILTER 11BIT
e PCAN ACCEPTANCE FILTER 29BIT

Parameters for “Logging and Debugging”:

e PCAN LOG LOCATION
e PCAN LOG STATUS

e PCAN LOG CONFIGURE
e PCAN LOG TEXT

Parameters for “CAN Data Recording (Tracing)”:

e PCAN TRACE LOCATION
e PCAN TRACE STATUS

e PCAN TRACE SIZE

e PCAN TRACE CONFIGURE

Parameters for “electronic circuits (I/O pins)”:

e PCAN IO DIGITAL CONFIGURATION
e PCAN IO DIGITAL VALUE

e PCAN |0 DIGITAL SET

e PCAN IO DIGITAL CLEAR

e PCAN IO ANALOG VALUE

Pre-Initialized Parameters

The parameter configuration within the PCAN-Basic API, except of the parameters grouped as
“Logging and Debugging” (these are not tied to a channel in particular), is allowed after a channel is
successfully initialized. Nevertheless, there are some cases in which it is needed to do some
configuration even before a channel is initialized. The following parameters can be configured on a
channel before it is initialized:

e PCAN RECEIVE STATUS
e PCAN LISTEN ONLY
e PCAN BITRATE ADAPTING

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Identifying a Hardware

First, consider that the first identification takes place when selecting the PCAN-Channel to be used.
The channel’s name already identifies the bus to use.

PCcAN_USBBUSs1

The name above tells the APl the PCAN hardware to connect to, which kind of bus it uses (USB), and
that it is the first (1) hardware registered in a system. PCAN-Basic allows connecting following
interfaces:

e USB: Universal Serial Bus. Up to 16 channels.

e PCl: Peripheral Component Interconnect (including ExpressCard hardware). Up to 16
channels.

e PCC: PC-Card (PCMCIA), Personal Computer Memory Card. Up to 2 channels.

e LAN: Virtual PCAN-Gateway connections. Up to 16 channels.

e DNG: Parallel port Dongle. Up to 1 channel.

e ISA: Industry Standard Architecture. Up to 8 channels.

Note that the way of how hardware is registered in a system depends on its controller driver and on
the system itself. When several devices of the same kind are installed on a system (USB for example),
by default it is not guaranteed that connecting to PCAN_USBBUS1 after a system restart will still
connect to the same hardware.

Therefore, parameters are used to help on the detection of the right hardware. The following
parameters are used to identify the physical hardware to connect, for example when several devices
are available for connection.

PCAN_CHANNEL_CONDITION

This parameter is used to identify the state of use of a PCAN-Channel by returning a flag value.
For example, a connection is only possible when a PCAN-Channel is available, which means:

e Itisvalid: The PCAN-Channel is one of the listed in the section “Supported by” below.
e It is connectable: The PCAN-Channel is not initialized, or it is currently used by a PCAN-View
application.

Availability
Available since version 1.0.0. Nevertheless, usability improved significantly since version
1.0.4, due to bugfixes. The behavior of this parameter was modified with the version 4.0.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
The condition of a PCAN-Channel can be one of the following defined values:

Defined Value Description

PCAN_CHANNEL_UNAVAILABLE The channel is not attached/accessible.

PCAN_CHANNEL_AVAILABLE The channel can be used.

PCAN_CHANNEL_OCCUPIED The channel was already initialized.

PCAN_CHANNEL_PCANVIEW The channel is being used by a PCAN-
View, but it can be initialized.

Note that the last value was introduced with the PCAN-Basic version 4.0.0. This value is an
OR-Operation between PCAN_CHANNEL_AVAILABLE and PCAN_CHANNEL_OCCUPIED. For
this reason, all software checking only for availability (result equal to
PCAN_CHANNEL_AVAILABLE) will miss to recognize channels that are being connected by
PCAN-View applications.

Default Value
Does not apply.

Initialization Status
Not relevant since this parameter is used to ask the status of a PCAN-Channel.

When to Use
It can be used when the availability status of a channel registered in a system at a given time
must be known.

Application - Example of Use
Imagine you want to create a Test-Application that connects to a PCAN-PCI device. In order
to allow the user to decide which PCAN-Channel should be used for data transmission, you
have to list all available PCAN-PCI Channels. Using this parameter, you can filter out the
channels that are occupied or unavailable (it is assumed that the PC has 4 PCl channels):

Native (C++)

TPCANHandle channelsToCheck[] = { PCAN_PCIBUS1, PCAN_PCIBUS2, PCAN_PCIBUS3, PCAN_PCIBUS4 };
DWORD condition;

for (int i = @; 1 < 4; i++)

if (CAN_GetValue(channelsToCheck[i], PCAN_CHANNEL_CONDITION, &condition, sizeof(condition)) ==
PCAN_ERROR_OK)
if ((condition & PCAN_CHANNEL_AVAILABLE) == PCAN_CHANNEL_AVAILABLE)
printf("The channel-handle ©x%X is AVAILABLE\n", channelsToCheck[i]);

i

Managed (C#)

ushort[] channelsToCheck = { PCANBasic.PCAN_PCIBUS1, PCANBasic.PCAN_PCIBUS2, PCANBasic.PCAN_PCIBUS3,
PCANBasic.PCAN_PCIBUS4 };
uint condition;

for (int i=0; i < 4; i++)

if (PCANBasic.GetValue(channelsToCheck[i], TPCANParameter.PCAN_CHANNEL_CONDITION, out condition,

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)
if ((condition & PCANBasic.PCAN_CHANNEL_AVAILABLE) == PCANBasic.PCAN_CHANNEL_AVAILABLE)
Console.WriteLine("The channel-handle ©x{@:X} is AVAILABLE", channelsToCheck[i]);

PCAN_CHANNEL_IDENTIFYING
This parameter is used to physically identify an USB-based PCAN-Channel being used. The
identification is done using the status LED of the USB devices. At the moment PEAK-System
offers USB devices of three different generations:
e First Generation: PCAN-USB, PCAN-Hub.
e Second Generation: PCAN-USB Pro, PCAN-USB2
e Third Generation: PCAN-USB Classic, PCAN-USB FD, PCAN-USB Pro FD,

According with the hardware used, the blinking of the LED is different in color and blink rate:

e First Generation: Blink color is RED, and the blink rate is about 300 milliseconds.
e Second Generation: Blink color is ORANGE, and the blink rate is about 250 milliseconds.
e Third Generation: Blink color is ORANGE, and the blink rate is about 250 milliseconds.

Availability
It is available since version 1.3.0.

Supported By
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter represents a procedure used for identification that can be activated or
deactivated.

Defined Value Description

PCAN_PARAMETER_OFF The identifying procedure is set to OFF.
PCAN_PARAMETER_ON The identifying procedure is set to ON.

Note that only one channel can be activated at a time. In order to switch on the identifying
procedure in another channel, the previous one must be first switched off.

Default Value
The default state of this identification procedure is off (PCAN_PARAMETER_OFF). After
switching it on, the LED of an USB device stays blinking until it is expressly turned off.

Initialization Status
This parameter can be used with both, initialized and uninitialized PCAN-Channels. Note that
the activation of this identification procedure doesn’t affect any communication that can
occur on the device while it is being identified.

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

When to Use
It can be used when an application can connect to several USB devices and it is not clear

which (physical) channel must be used in a determined time, for example, before
establishing a connection to a channel. It is also useful in application that communicate with
several USB devices at the same time and for long periods of time (or applications used for
several people), to check with channels are being used in a determined time.

Application - Example of Use

Let’s say you have an application communicating with several USB devices. This application is
running on a computer on which the order of the devices representing each PCAN-Channel
can vary (the computer reboots automatically within a given period, the physical CAN
networks are eventually swapped, etc.). Now you’re using the application and you need to
physically disconnect a device, but you don’t know which PCAN-Channel is associated to it,
and you don’t want to disturb the other channels. You can write a small application that just
turns the identifying procedure on a given channel on, so that you can see which device is
the one you are looking for (it is assumed that the PC has 3 USB channels):

Native (C++)

TPCANHandle channelsToIdentify[] = { PCAN_USBBUS1, PCAN_USBBUS2, PCAN_USBBUS3 };
DWORD activate;

for (int i = @; i < 3; i++)
{

activate = PCAN_PARAMETER_ON;

if (CAN_SetValue(channelsToIdentify[i], PCAN_CHANNEL_IDENTIFYING, &activate, sizeof(activate)) ==
PCAN_ERROR_OK)

{
printf("The channel with handle @x%X is now BLINKING. ", channelsToIdentify[i]);
system("PAUSE");
activate = PCAN_PARAMETER_OFF;
CAN_SetValue(channelsToIdentify[i], PCAN_CHANNEL_IDENTIFYING, &activate, sizeof(activate));
}

Managed (C#)

ushort[] channelsToIdentify = { PCANBasic.PCAN_USBBUS1, PCANBasic.PCAN_USBBUS2, PCANBasic.PCAN_USBBUS3 };
uint activate;

for (int i = @; i < 3; i++)
{

activate = PCANBasic.PCAN_PARAMETER_ON;

if (PCANBasic.SetValue(channelsToIdentify[i], TPCANParameter.PCAN_CHANNEL_IDENTIFYING, ref activate,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

{

Console.Write("The channel with handle ©x{@:X} is now BLINKING. ", channelsToIdentify[i]);

Console.WriteLine("Press any Key to continue . . .");

Console.ReadKey();

activate = PCANBasic.PCAN_PARAMETER_OFF;

PCANBasic.SetValue(channelsToIdentify[i], TPCANParameter.PCAN_CHANNEL_IDENTIFYING, ref activate,
sizeof(uint));

i

PCAN_DEVICE_ID
This parameter is used to distinguish between 2 or more devices of the same kind connected
to a computer simultaneously. A device identifier is a persistent value stored in the flash
memory of each device, i.e., the value is not lost after disconnecting the hardware.

Note that the devices can have the same identifier. It is up to the user to guarantee that the
devices being used are configured with different identifiers, so that a differentiation through
this value can work.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

This parameter was previously called PCAN_DEVICE_NUMBER. It was renamed to
PCAN_DEVICE_ID starting with PCAN-Basic version 4.4.0. PCAN_DEVICE_NUMBER is still
present for backward compatibility reasons, but it is marked as deprecated. Users should use
PCAN_DEVICE_ID instead.

Availability
It is available since version 1.0.0. as PCAN_DEVICE_NUMBER.
It can be read without initialization since version 4.4.0.

Supported By
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Notes:

PCAN-PCI: Only FPGA based devices. Requires a device driver version equal to or greater than
4.2.0.

PCAN-LAN: Only devices with a firmware version equal to or greater than 2.8.2. Requires a
device driver version equal to or greater than 4.2.0.

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
According with the firmware version of the PCAN-USB device, this value can have a
resolution of a byte (range [0...255]) or a double-word (range [0...4294967295]).

Default Value
If this parameter was never set before, the value is the maximum value possible for the used
resolution which is 255 (FFh), or 429496729 (FFFFFFFFh).

Initialization Status
Get: It can be read on initialized or uninitialized PCAN-Channels.
Set: It can be set on initialized PCAN-Channels only.

When to Use
It can be used when it is needed to differentiate between PCAN-USB devices connected to
the same system at a given time.

Application - Example of Use

Let’s say you want to write an application that reads data from one CAN-BUS and replies to a
second CAN-BUS (a.k.a. Gateway application). For this you could have one PCAN-USB device
connected to each CAN-BUS. You could set the device number of both PCAN-USBs so that
you know which bus is used for writing (for example, number 1 for the “to write to” bus),
and which bus is used for reading (for example, number 2 for the “to read from” bus). Using
this parameter, you would be able to know if both channels are available and which device is
used for sending and which one for writing (it is assumed that the PC has 2 USB devices
connected):

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Native (C++)

TPCANHandle channelsToCheck[] = { PCAN_USBBUS1, PCAN_USBBUS2 };
DWORD deviceld;
TPCANHandle readChannel, writeChannel;

readChannel = writeChannel = PCAN_NONEBUS;
for (int i = @; 1 < 2; i++)

if (CAN_GetValue(channelsToCheck[i], PCAN_DEVICE_ID, &deviceIld, sizeof(deviceId)) == PCAN_ERROR_OK)
if (deviceId == 1)

writeChannel = channelsToCheck[i];
printf("The channel for writing (handle ©x%X) was found.\n", channelsToCheck[i]);

if (deviceld == 2)
readChannel = channelsToCheck[i];

printf("The channel for reading (handle ©x%X) was found.\n", channelsToCheck[i]);

¥

if ((readChannel != PCAN_NONEBUS) && (writeChannel != PCAN_NONEBUS))

printf("Both channels were found. Starting to work . . .");
// Do work .
}
else
printf("Error! Not all needed channels were found. Terminating . . .");

Managed (Ci#)

ushort[] channelsToCheck = { PCANBasic.PCAN_USBBUS1, PCANBasic.PCAN_USBBUS2 };
uint deviceld;
ushort readChannel, writeChannel;

readChannel = writeChannel = PCANBasic.PCAN_NONEBUS;
for (int i = @; 1 < 2; i++)

if (PCANBasic.GetValue(channelsToCheck[i], TPCANParameter.PCAN_DEVICE_ID, out deviceId, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)

if (deviceld == 1)

writeChannel = channelsToCheck[i];
Console.WriteLine("The channel for writing (handle @x{@:X}) was found.", channelsToCheck[i]);

if (deviceld == 2)
readChannel = channelsToCheck[i];

Console.WriteLine("The channel for reading (handle 0x{@:X}) was found.", channelsToCheck[i]);

¥

if ((readChannel != PCANBasic.PCAN_NONEBUS) && (writeChannel != PCANBasic.PCAN_NONEBUS))

Console.WriteLine("Both channels were found. Starting to work . . .");
// Do work .
}
else
Console.WriteLine("Error! Not all needed channels were found. Terminating . . .");

PCAN_HARDWARE_NAME
This parameter is used to retrieve a description text from the hardware represented by a
PCAN channel. This text allows the recognition of device’s models that use the same
interface, for example USB. A normal PCAN USB adaptor would return “PCAN-USB” while the
new dual CAN/LIN FD channel adaptor would return “PCAN-USB Pro FD”.

Availability
It is available since version 1.0.6.
It can be read without initialization since version 4.4.0.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode

This parameter can only be read. It cannot be modified.
Possible Values 0

The value is a null-terminated string which contains the name of the hardware specified by
the given PCAN channel. This string has a maximum length of 32 bytes (null-termination
character included).

According with the hardware model represented by the current PCAN-Channel, the following
text can be returned:

Hardware Name Value Interface Hardware Description

PEAK ISA-CAN PCAN-ISA PCAN-ISA, PCAN-PC/104

PEAK ISA-CAN SJA PCAN-ISA PCAN-ISA, PCAN-PC/104 with a SJA1000

PEAK Dongle-CAN PCAN-DNG PCAN-Dongle with an 82C200

PEAK Dongle-CAN EPP PCAN-DNG PCAN-Dongle with an 82C200, using EPP mode

PEAK Dongle-CAN SJA PCAN-DNG PCAN-Dongle with a SJA1000

PEAK Dongle-CAN SJA EPP PCAN-DNG PCAN-Dongle with a SJA1000, using EPP mode

PEAK Dongle-Pro PCAN-DNG PCAN-Dongle Pro

PEAK Dongle-Pro EPP PCAN-DNG PCAN-Dongle Pro in EPP mode

PCAN-PCI PCAN-PCI CAN Interface for PCI

PCAN-PCI Express PCAN-PCI CAN Interface for PCI Express

PCAN-PCI Express FD PCAN-PCI CAN and CAN FD Interface for PCI Express

PCAN-cPCI PCAN-PCI CAN Interface for CompactPCl

PCAN-MiniPCI PCAN-PCI CAN Interface for Mini PCI

PCAN-miniPCle PCAN-PCI CAN Interface for PCI Express Mini (PCle)

PCAN-miniPCle FD PCAN-PCI CAN and CAN FD Interface for PCl Express Mini
(PCle)

PCAN-M.2 PCAN-PCI CAN and CAN FD Interface for M.2 (PCle)

PCAN-Chip PCle FD PCAN-PCI Chip Solutions for the CAN FD Connection to
PCI Express

PCAN-PCI/104-Plus PCAN-PCI CAN Interface for PC/104-Plus

PCAN-PCI/104-Plus Quad PCAN-PCI Four-Channel CAN Interface for PC/104-Plus

PCAN-PCI/104-Express PCAN-PCI CAN Interface for PCI/104-Express

PCAN-PC/104-Express FD PCAN-PCI CAN and CAN FD Interface for PCI/104-Express

PCAN-ExpressCard PCAN-PCI PCAN-ExpressCard

PCAN-ExpressCard 34 PCAN-PCI PCAN-ExpressCard 34

PCAN-USB PCAN-USB PCAN-USB Adapter, PCAN-USB Hub

PCAN-USB FD PCAN-USB PCAN-USB FD Adapter, PCAN-USB

PCAN-USB Pro PCAN-USB PCAN-USB Pro dual CAN/LIN

PCAN-USB Pro FD PCAN-USB PCAN-USB Pro FD dual CAN/LIN FD

PCAN-USB Hub PCAN-USB All-in-one USB Adapter for communication
through USB, CAN and RS-232

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

PCAN-USB X6 PCAN-USB 6-Channel CAN and CAN FD Interface for High-
Speed USB 2.0

PCAN-Chip USB PCAN-USB Stamp Module for the Implementation of CAN
FD to USB Connections

PCAN-PCCARD-CAN PCAN-PCC PCAN-PC Card

PCAN-Ethernet Gateway DR PCAN-LAN PCAN-Gateway wired for mounting on a DIN
rail

PCAN-Wireless Gateway DR PCAN-LAN PCAN-Gateway wireless for mounting on a DIN
rail

PCAN-Wireless Gateway PCAN-LAN PCAN-Gateway wireless with D-Sub connector

PCAN-Wireless Automotive PCAN-LAN PCAN-Gateway wireless with automotive

Gateway connector

Default Value

Does not apply.

Initialization Status
Get: It can be read on initialized or uninitialized PCAN-Channels.

When to Use
It can be used when it is needed to differentiate between several hardware models using the
same interface (e.g., PCAN-PCI, PCAN-ExpressCard)

Application - Example of Use

Consider the following scenario: You want to develop a Diagnostic-Application using a normal
PCAN-USB device for data transmission. The program should run on computers that have per
default a PCAN-USB Pro attached, intended to be used from other programs (for ECU
controlling, Gateway configuration purpose, etc.), and therefore shouldn’t be occupied. This
means that the system will have 3 PCAN channels registered (PCAN_USBBUS1 to
PCAN_USBBUSS3). Since the diagnostic network will be always plugged-in to your PCAN-USB,
your application must be sure to connect the single channel and not one of the PCAN-USB
Pro channels. Using this parameter, you would be able to identify which PCAN-Channel
represents a PCAN-USB and which one a PCAN-USB Pro (it is assumed that the PC has 3 USB
channels):

Native (C++)

TPCANHandle channelsToCheck[] = { PCAN_USBBUS1, PCAN_USBBUS2, PCAN_USBBUS3 };
char hardwareName[MAX_LENGTH_HARDWARE_NAME] = { @ };
TPCANHandle debugBus = PCAN_NONEBUS;

for (int i = @; 1 < 3; i++)

{
if (CAN_GetValue(channelsToCheck[i], PCAN_HARDWARE_NAME, hardwareName, MAX_LENGTH_HARDWARE_NAME) ==
PCAN_ERROR_OK)

{
if (strcmp(hardwareName, "PCAN-USB") == @)
{

debugBus = channelsToCheck[i];
break;
}
}
}

if (debugBus != PCAN_NONEBUS)

{
printf("Single PCAN-USB for debugging (handle ©x%X) found. Starting to work . . .", debugBus);
// Do work . . .

}

else
printf("Error! Single PCAN-USB Channel was not found. Terminating . . .");

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Managed (C#)

ushort[] channelsToCheck = { PCANBasic.PCAN_USBBUS1, PCANBasic.PCAN_USBBUS2, PCANBasic.PCAN_USBBUS3 };
StringBuilder hardwareName = new StringBuilder(PCANBasic.MAX_LENGTH_HARDWARE_NAME) ;

TPCANHandle debugBus = PCANBasic.PCAN_NONEBUS;

for (int i = 0; 1 < 3; i++)

if (PCANBasic.GetValue(channelsToCheck[i], TPCANParameter.PCAN_HARDWARE_NAME, hardwareName,
PCANBasic.MAX_LENGTH_HARDWARE_NAME) == TPCANStatus.PCAN_ERROR_OK)

if (hardwareName.ToString().Equals("PCAN-USB"))

debugBus = channelsToCheck[i];

break;
}
¥
}
if (debugBus != PCANBasic.PCAN_NONEBUS)
Console.WriteLine("Single PCAN-USB for debugging (0x{@:X}) found. Starting to work . . .", debugBus);
// Do work . . .
}
else
Console.WriteLine("Error! Single PCAN-USB Channel was not found. Terminating . . .");

@

PCAN_CONTROLLER_NUMBER
This parameter is used to identify the physical CAN channel index of a multichannel CAN
hardware (PCAN-PCI, PCAN-USB Pro, PCAN-LAN, etc.). This index is zero-based, so that the
first channel on a device is 0, the second 1, and so on.

Availability
It is available since version 1.2.0.
It can be read without initialization since version 4.4.0.

Supported By
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS?2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
A number in the range [0...n-1], where n is the number of physical channels on the device
being used. The correspondence between an index number and the CAN channel description
on the hardware etiquette is:

Channel Index Channel Label

0 CAN 1

1 CAN 2

n-1 CAN n
Default Value

Does not apply.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Initialization Status
Get: It can be read on initialized or uninitialized PCAN-Channels.
Set: It can be set on initialized PCAN-Channels only.

When to Use
It can be used to determine which physical channel of a multichannel PCAN device has to be
connected.

Application - Example of Use
The easy case: let’s say you want to write an application that should work only with the
second channel of any PCAN-USB device. You could just ask for the
PCAN_CONTROLLER_NUMBER on each available USB channel until you find a channel with a
controller number equals to “1” (it is assumed that the PC has 4 USB channels):

Native (C++)

TPCANHandle channelsToCheck[] = { PCAN_USBBUS1, PCAN_USBBUS2, PCAN_USBBUS3, PCAN_USBBUS4 };
DWORD controllerNumber;
TPCANHandle canChannel2 = PCAN_NONEBUS;

for (int i = @; i < 4; i++)

if (CAN_GetValue(channelsToCheck[i], PCAN_CONTROLLER_NUMBER, &controllerNumber,
sizeof(controllerNumber)) == PCAN_ERROR_OK)

if (controllerNumber == 1)
{
canChannel2 = channelsToCheck[i];
break;
}
}
}
if (canChannel2 != PCAN_NONEBUS)
{
printf("Second USB CAN-controller found (handle ©x%X). Starting to work . . .", canChannel2);
// Do work . . .
}
else
printf("Error! Second USB CAN-controller was not found. Terminating . . .");

Managed (C#)

ushort[] channelsToCheck = { PCANBasic.PCAN_USBBUS1, PCANBasic.PCAN_USBBUS2, PCANBasic.PCAN_USBBUS3,
PCANBasic.PCAN_USBBUS4 };

uint controllerNumber;

ushort canChannel2 = PCANBasic.PCAN_NONEBUS;

for (int i = @; 1 < 4; i++)

if (PCANBasic.GetValue(channelsToCheck[i], TPCANParameter.PCAN_CONTROLLER_NUMBER, out controllerNumber,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)
{

if (controllerNumber == 1)
{
canChannel2 = channelsToCheck[i];
break;
}
}
}
if (canChannel2 != PCANBasic.PCAN_NONEBUS)
{
Console.WriteLine("Second USB CAN-controller found (handle ©x{@:X}). Starting to work . . .",
canChannel2);
// Do work . . .
}
else
Console.WriteLine("Error! Second USB CAN-controller was not found. Terminating . . .");

The complicated case: you want to use the second channel of a specific PCAN-USB Pro FD
hardware, device number 7 for example, and there exists the possibility to have several
multi-channels devices attached to the computer at a time. Using the parameter

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

PCAN_HARDWARE_NAME lets you find any PCAN-USB Pro connected. Using the parameter
PCAN_DEVICE_ID lets you find the right Device (number 7). Finally, using the
PCAN_CONTROLLER_NUMBER lets you find the right CAN channel to use (it is assumed that
the PC has 4 USB channels):

Native (C++)

TPCANHandle channelsToCheck[] = { PCAN_USBBUS1, PCAN_USBBUS2, PCAN_USBBUS3, PCAN_USBBUS4 };
char hardwareName[MAX_LENGTH_HARDWARE_NAME] = { © };

DWORD deviceld;

DWORD controllerNumber;

TPCANHandle canChannel2 = PCAN_NONEBUS;

for (int i = @; 1 < 4; i++)

if (CAN_GetValue(channelsToCheck[i], PCAN_HARDWARE_NAME, hardwareName, MAX_LENGTH_HARDWARE_NAME) ==
PCAN_ERROR_OK)
{

if (strcmp(hardwareName, "PCAN-USB Pro FD") != @)
continue;

if (CAN_GetValue(channelsToCheck[i], PCAN_DEVICE_ID, &deviceld, sizeof(deviceId)) == PCAN_ERROR_OK)

if (deviceld != 7)
continue;

if (CAN_GetValue(channelsToCheck[i], PCAN_CONTROLLER_NUMBER, &controllerNumber,
sizeof(controllerNumber)) == PCAN_ERROR_OK)

if (controllerNumber == 1)

{

canChannel2 = channelsToCheck[i];
break;

¥

if (canChannel2 != PCAN_NONEBUS)

printf("Second USB CAN-controller found (handle ©x%X). Starting to work . , canChannel2);
// Do work .
}

else
printf("Error! Second USB CAN-controller was not found. Terminating . . .");

Managed (Ci#)

ushort[] channelsToCheck = { PCANBasic.PCAN_USBBUS1, PCANBasic.PCAN_USBBUS2, PCANBasic.PCAN_USBBUS3,
PCANBasic.PCAN_USBBUS4 };

uint controllerNumber;

uint deviceld;

StringBuilder hardwareName = new StringBuilder(PCANBasic.MAX_LENGTH_HARDWARE_NAME) ;

ushort canChannel2 = PCANBasic.PCAN_NONEBUS;

for (int i = @; 1 < 4; i++)

{
if (PCANBasic.GetValue(channelsToCheck[i], TPCANParameter.PCAN_HARDWARE_NAME, hardwareName,
PCANBasic.MAX_LENGTH_HARDWARE_NAME) == TPCANStatus.PCAN_ERROR_OK)

if(hardwareName.ToString().CompareTo("PCAN-USB Pro FD") != @)
continue;

if (PCANBasic.GetValue(channelsToCheck[i], TPCANParameter.PCAN_DEVICE_ID, out deviceld,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

if (deviceld != 7)
continue;

if (PCANBasic.GetValue(channelsToCheck[i], TPCANParameter.PCAN_CONTROLLER_NUMBER, out
controllerNumber, sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

if (controllerNumber == 1)

{

canChannel2 = channelsToCheck[i];
break;

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

if (canChannel2 != PCANBasic.PCAN_NONEBUS)
{
Console.WriteLine("Second USB CAN-controller found (handle ©x{@:X}). Starting to work . . .",
canChannel2);
// Do work . . .
}
else
Console.WriteLine("Error! Second USB CAN-controller was not found. Terminating . . .");

PCAN_IP_ADDRESS
This parameter applies ONLY to hardware of type PCAN-LAN. It is used to distinguish
between 2 or more hardware of this kind connected to a computer simultaneously. An IP
address is the configured network address on a PCAN-Gateway device, i.e., the address used
to communicate with a PCAN-Gateway device through the network (LAN/WAN).

The IP address identifies a device effectively because it is not allowed to have the same IP
address twice within a network, at the same time (address conflict).

Availability
Available since version 4.0.0.
It can be read without initialization since version 4.6.1.

Supported By
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
Since the format used for the IP address is IPv4, possible values are string representing 4
number sections separated by ‘.” which are in the range [0...255]. Example of an IP address is:
“192.168.0.1".

Default Value
Does not apply.

Initialization Status
Get: It can be read on initialized or uninitialized PCAN-Channels.

When to Use
It can be used when it is needed to differentiate between PCAN-LAN devices connected to
the same system at a given time, or just to use the IP address to get more information about
a remote PCAN-Gateway device.

Application - Example of Use
Let’s say you have several PCAN-LAN channels available to connect to, and each of them
represents a different PCAN-Gateway device. You want to observe the CAN data on the
remote address 192.168.1.95. Asking PCAN-Basic for channel availability will return only a list
of channels like “PCAN_LANBUS1, PCAN_LANBUS2, PCAN_LANBUS3, ...,”. Asking the IP
address on each channel will help you finding the desired device (it is assumed that there are
3 LAN channels available, working with normal CAN protocol):

Y

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Native (C++)

TPCANHandle channelsToCheck[] = { PCAN_LANBUS1, PCAN_LANBUS2, PCAN_LANBUS3 };
char ipBuffer[20] = { @ };
TPCANHandle lanToWatch = PCAN_NONEBUS;
for (int i = 0; 1 < 3; i++)
if (CAN_GetValue(channelsToCheck[i], PCAN_IP_ADDRESS, ipBuffer, 20) == PCAN_ERROR_OK)
if (strcmp(ipBuffer, "192.168.1.95") == 0)

lanToWatch = channelsToCheck[i];

break;
}

}
}
if (lanToWatch != PCAN_NONEBUS)

printf("LAN channel found (handle @x%X). . .", lanToWatch);

// Do work . . .
}
else

printf("Error! LAN channel with required IP is not available. Terminating . . .");

Managed (Ci#)

ushort[] channelsToCheck = { PCANBasic.PCAN_LANBUS1, PCANBasic.PCAN_LANBUS2, PCANBasic.PCAN_LANBUS3 };
StringBuilder ipBuffer = new StringBuilder(20);

ushort lanToWatch = PCANBasic.PCAN_NONEBUS;

for (int i = @; 1 < 3; i++)

if (PCANBasic.GetValue(channelsToCheck[i], TPCANParameter.PCAN_IP_ADDRESS, ipBuffer, 20) ==
TPCANStatus.PCAN_ERROR_OK)

if (ipBuffer.ToString().CompareTo("10.1.12.214") == 0)

lanToWatch = channelsToCheck[i];

break;
}
}
}
if (lanToWatch != PCANBasic.PCAN_NONEBUS)
{
Console.WriteLine("LAN channel found (handle @x{@:X}). . .", lanToWatch);
// Do work . . .
}
else
Console.WriteLine("Error! LAN channel with required IP is not available. Terminating . . .");

PCAN_ATTACHED_CHANNELS
This parameter is used to get information about all existing PCAN channels on a system in a
single call, regardless of their current availability (See CHANNEL CONDITION).
This parameter is closely tied to another, PCAN_ATTACHED CHANNELS COUNT. It returns
the number of existing channels, which is important for the size calculation of the buffer,

that must be passed to the function CAN_GetValue, when using the parameter
PCAN_ATTACHED_CHANNELS.

The size in bytes of this buffer is calculated using the result of
PCAN_ATTACHED_CHANNELS_COUNT multiplied by the size of the structure
TPCANChannellnformation.

If Python is used, then it is not necessary to calculate the size of the buffer. Since the call to
PCANBasic.GetValue in Python returns a tuple as result, the function internally defines a
buffer big enough for storing and returning the information of the channels.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Following information is delivered for each available channel:

e channel_handle: Contains the PCAN-Channel identification handle, used for API calls (e.g.,
PCAN_USBBUS1, PCAN_PCIBUS2, etc.).

e device type: Denotes the type of device to which the PCAN-Channel belongs (e.g.,
PCAN_USB, PCAN_PClI, etc.).

e controller_number: Indicates the physical CAN channel index (zero-based) associated to the
PCAN channel. This value is the same returned when calling CAN_GetValue with the
parameter PCAN_CONTROLLER NUMBER.

e device features: Contains information about special properties associated to the PCAN-

Channel. This value is the same returned when calling CAN_GetValue with the parameter
PCAN CHANNEL FEATURES.

e device_name: Contains the description text from the device to which the PCAN-Channel
belongs. This value is the same returned when calling CAN_GetValue with the parameter
PCAN HARDWARE NAME.

e device_id: Represents an identification value stored in the flash memory of the device to

which the PCAN-Channel belongs. This value is the same returned when calling
CAN_GetValue with the parameter PCAN DEVICE ID (previously called
PCAN_DEVICE_NUMBER).

e channel_condition: Represents the state of use of the PCAN-Channel. This value is the same
returned when calling CAN_GetValue with the parameter PCAN CHANNEL CONDITION.

Availability
It is available since version 4.4.0.

Supported By
PCAN-NONEBUS: The number of available channels is not tied to any channel, i.e. no specific
channel can be used for this query.

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
The returned value is an array of TPCANChannellnformation elements. This array contains as
many elements as the value returned when calling CAN_GetValue with the parameter
PCAN ATTACHED CHANNELS COUNT.

Default Value
Does not apply.

Initialization Status
Not relevant since this parameter is not channel dependent.

When to Use
It can be used to enumerate all existing PCAN channels in a PC at a given time, in only one
function call.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Application - Example of Use
Commonly, an application first shows the connection possibilities it has, before starting with
a specific work. This implies searching the system for connectable channels, their names,
capabilities, and other characteristics that may help choosing a device to work with. The
parameter PCAN_ATTACHED_CHANNELS is used to get all this information with only one
function call.

Native (C++)

DWORD channelsCount;

if (CAN_GetValue(PCAN_NONEBUS, PCAN_ATTACHED_CHANNELS_COUNT, &channelsCount, sizeof(channelsCount)) ==
PCAN_ERROR_OK)

printf("Total of %d channels were found:\n", channelsCount);
if (channelsCount > @)

TPCANChannelInformation* channels = new TPCANChannelInformation[channelsCount];
if (CAN_GetValue(PCAN_NONEBUS, PCAN_ATTACHED_CHANNELS, channels, channelsCount *
sizeof(TPCANChannelInformation)) == PCAN_ERROR_OK)
{
for (int i = @; i < (int)channelsCount; i++)
{
printf("%d) --------------------"o---- \n", 1+ 1);
printf(" Name: %s\n", channels[i].device_name);
printf(" Handle: @x%X\n", channels[i].channel_handle);
printf("Controller: %d\n", channels[i].controller_number);
printf(" Condition: %d\n", channels[i].channel_condition);
printf(" \n");
}

delete[] channels;

Managed (Ci#)

uint channelsCount;

if (PCANBasic.GetValue(PCANBasic.PCAN_NONEBUS, TPCANParameter.PCAN_ATTACHED_CHANNELS_COUNT, out
channelsCount, sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)
{

Console.WriteLine("Total of {@} channels were found:", channelsCount);

if (channelsCount > 0)

TPCANChannelInformation[] channels = new TPCANChannelInformation[channelsCount];
if (PCANBasic.GetValue(PCANBasic.PCAN_NONEBUS, TPCANParameter.PCAN_ATTACHED_CHANNELS, channels) ==
TPCANStatus.PCAN_ERROR_OK)

{
for (int i = @; i < channelsCount; i++)
{
Console.WriteLine("{@}) --------------------------- \n", i+ 1);
Console.WriteLine(" Name: {@}", channels[i].device_name);
Console.WriteLine(" Handle: @x{@:X}", channels[i].channel_handle);
Console.WriteLine("Controller: {@}", channels[i].controller_number);
Console.WriteLine(" Condition: {@}", channels[i].channel_condition);
Console.WriteLine(" N8
}
}

PCAN_DEVICE_PART_NUMBER
This parameter is used to get the part number (IPEH-number) associated with a PCAN device.
This is a text that allows the recognition and differentiation of device models using the same
interface, for example USB. A PCAN-USB FD adaptor would return “IPEH-004022” while a
classic PCAN-USB would return “IPEH-002021/002022".

Availability
It is available since version 4.6.0.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Supported By
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values

The part number is represented as a string of the form “IPEH-xxxxxx”, where xxxxxx
represents a six-digit number. If a device has several revisions so, that it is represented by
more than one IPEH number, then all numbers are contained in the same text, separated by
a “/” character. For example, a classic PCAN-USB reports the value “IPEH-002021/002022".
The returned value is a null terminated string with a length of minimum 12 bytes. It is
recommended to use a buffer big enough to guarantee success if a special case as described
above occur.

Default Value
Does not apply.

Initialization Status
It can be read on initialized or uninitialized PCAN-Channels.

When to Use
It can be used when it is wanted to differentiate between several hardware models using the
same interface.

Application - Example of Use
Let’s say that you have a device that you want to acquire again but the label on it is not
readable anymore. You could use this parameter to get the IPEH-number, so that you can
contact your distributor and ask for that specific device:

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
char partNumber[100] = { 0 };

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)
if (CAN_GetValue(channelUsed, PCAN_DEVICE_PART_NUMBER, partNumber, 100) == PCAN_ERROR_OK)
printf("Part number: %s", partNumber);
else
printf("Error! Could not retrieve the part number of the device.");
else
printf("Error! Could not initialize the channel ©x%X", channelUsed);

Managed (C#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
StringBuilder partNumber = new StringBuilder(100);

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)
if (PCANBasic.GetValue(channelUsed, TPCANParameter.PCAN_DEVICE_PART_NUMBER, partNumber, 100) ==
TPCANStatus.PCAN_ERROR_OK)
Console.WriteLine("Part number: {@}", partNumber);
else
Console.WriteLine("Error! Could not retrieve the part number of the device.");
else

_

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

| Console.WriteLine("Error! Could not initialize the channel 0x{0:X}", channelUsed);

PCAN_DEVICE_GUID
This parameter is used to identify a device connected to a computer. A global unique
identifier (GUID) is a persistent, distinctive, and immutable value stored in the flash memory
of each device.

As the name suggests, this type of value ensures that devices do not have the same
identifier. This makes unambiguous recognition of a PCAN device possible.

Notes:
PCAN-USB: Requires a FPGA-based device with firmware version equal to or greater than
3.5.1. Requires a driver version equal to or greater than 4.6.0.

At the time of writing this documentation only PCAN-USB Pro FD, and PCAN-USB FD devices
allow reading the GUID of the device.

Availability
It is available since version 4.10.0.

Supported By
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
A string representing a 128-bit label as hexadecimal values using the 8-4-4-4-12 format, RFC
4122.

Default Value
Does not apply.

Initialization Status
Get: It can be read on initialized or uninitialized PCAN-Channels.

When to Use
This parameter can be used when it is necessary to work only with a specific device, i.e. to
unequivocally identify a PCAN device connected to the system at a given time.

Application - Example of Use
Let's assume you have written a PCAN-Basic based software that should be bound to a
specific PCAN-USB FD device (software/hardware bundle). Since you know the GUID of the
device, you can check in your application whether the device is the right one and refuse to
work if it is not:

Native (C++)

#define ALLOWED_GUID ’12345678-AAAA-BBBB-CCCC-123456789ABC”

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

TPCANHandle channelUsed = PCAN_USBBUS1;
char strBuffer[256];

TPCANStatus stsResult = CAN_GetValue(channelUsed, PCAN_DEVICE_GUID, strBuffer, 256);
if (stsResult == PCAN_ERROR_OK)

if (strcmp(ALLOWED_GUID, strBuffer) == @)
printf("PCAN-USB FD device verified. Starting to work!");
else
printf("The connected PCAN-USB FD device CANNOT be used with this application!™);
}
else
printf("Error! Could not get the GUID for channel 0x%X.", channelUsed);

Managed (Ci#)

private static string ALLOWED_GUID = »12345678-AAAA-BBBB-CCCC-123456789ABC”;

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
StringBuilder strBuffer = new StringBuilder(256);

TPCANStatus stsResult = PCANBasic.GetValue(channelUsed, TPCANParameter.PCAN_DEVICE_GUID, strBuffer, 256);

if (stsResult == TPCANStatus.PCAN_ERROR_OK)

{
if (ALLOWED_GUID == strBuffer.ToString())
Console.WriteLine("PCAN-USB FD device verified. Starting to work!");
else
Console.WriteLine("The connected PCAN-USB FD device CANNOT be used with this application!");
}
else

Console.WriteLine("Error! Could not get the GUID for channel 0x{0:X}.", channelUsed);

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Using Informational Parameters

These parameters are intended to give versioning information about the API itself, as well as about
the Hardware (e.g., device driver version). This is important since different features can or cannot be
available according with the versions being used.

To be sure that a PCAN-Basic software works properly with a specific hardware, it is a good idea to
check version parameters at the beginning (after connection). In this way, you can ensure that the
software will work for users as it was working for you at development.

Note that when dependences between a PCAN-Parameter and the APl and/or driver/firmware
Version appear, they will be notified and remarked in the Online-Help of the PCAN-Basic, as well as in
our website (e.g., Forum).

PCAN_API_VERSION

This parameter is used to get the APl implementation version.

Availability
Available since version 1.0.0.

Supported By
All channels: Due to the API structure, a channel value is needed to get a PCAN-Parameter
when using the function CAN_GetValue. But since the API version doesn’t depend on a
specific channel, any defined channel value can be used, including PCAN_NONEBUS.

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
The APl version value is represented as a string of the form “a.b.c.d”, where:
a: represents the major version number.
b: represents the minor version number.
c: represents the release version number.
d: represents the build number.
All four values have a maximum size of 16 bits that allows a value of 65535 per each. The
returned value is a null terminated string with a maximum length of 24 bytes. It is
recommended to use a buffer that large to guaranty success in any case.

Default Value
Does not apply.

Initialization Status
Not relevant since this parameter is not channel dependent.

When to Use
It can be used to determine if a feature to be used is available or not, or just as informative
output in an application.

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Application - Example of Use
Let’s say that you want to show from your application a list of the APIs and libraries being
used with their versions, so that if any problem appears then a user can get back to you with
versioning information.

Native (C++)

char apiVersion[MAX_LENGTH_VERSION_STRING] = { @ };
if (CAN_GetValue(PCAN_NONEBUS, PCAN_API_VERSION, apiVersion, MAX_LENGTH_VERSION_STRING) == PCAN_ERROR_OK)

printf("The PCAN-Basic version used is: %s\n", apiVersion);

Managed (C#)

StringBuilder apiVersion = new StringBuilder(PCANBasic.MAX_LENGTH_VERSION_STRING);

if (PCANBasic.GetValue(PCANBasic.PCAN_NONEBUS, TPCANParameter.PCAN_API_VERSION, apiVersion,
PCANBasic.MAX_LENGTH_VERSION_STRING) == TPCANStatus.PCAN_ERROR_OK)

{

¥

Console.WriteLine("The PCAN-Basic version used is: {@}", apiVersion);

PCAN_CHANNEL_VERSION

This parameter is used to obtain information about the underlying device driver of a PCAN
device being used as well as to obtain copyright information.

Availability
It is available since version 1.0.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS?2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
The information about driver version and copyright is represented as a multiline string (4
lines) offering the following information in each line:
1) Device driver name and driver version.
2) Architecture implemented on the driver and targeted platform.
3) Year of Copyright.
4) Company name and city where its head office is located.
Note that this format is available beginning with the device driver version 3.x. The returned
value is a null terminated string with a maximum length of 256 bytes (null termination
included). Itis recommended to use a buffer that large to guaranty success in any case.

Default Value
Does not apply.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Initialization Status
Not relevant, since this parameter refers to device driver used for a given channel. Device
drivers are loaded on Windows start and unloaded again on Windows shutdown.

When to Use
It can be used as informative output about the used driver in an application.

Application - Example of Use
Let’s say that your application is distributed without hardware, so that there is the possibility
that a user can have a device with a version you have not tested. Using this parameter avoids

losing time by looking for an error that may not be caused by your software but using a
wrong or old driver (it is assumed, a USB channel is connected, and an error is raised). \J

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)
{

//"Somewhere a problem occurred and is catched here";

char channelVersion[MAX_LENGTH_VERSION_STRING] = { @ };

printf("Error! An exception has occurred while working with channel @x%X\n\n", channelUsed);

if (CAN_GetValue(channelUsed, PCAN_CHANNEL_VERSION, channelVersion, MAX_LENGTH_VERSION_STRING) ==
PCAN_ERROR_OK)

{
printf("Please contact us and share following information:\n");
printf("%s\n", channelVersion);

}

else

printf("It was not possible to get informaiton about the channel");

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)
// "Somewhere a problem occurred and is catched here");

StringBuilder channelVersion = new StringBuilder(PCANBasic.MAX_LENGTH_VERSION_STRING);

Console.WriteLine("Error! An exception has occurred while working with channel @x{@:X}\n", channelUsed);

if (PCANBasic.GetValue(channelUsed, TPCANParameter.PCAN_CHANNEL_VERSION, channelVersion,
PCANBasic.MAX_LENGTH_VERSION_STRING) == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("Please contact us and share following information:");
Console.WriteLine(channelVersion);

}

else
Console.WriteLine("It was not possible to get informaiton about the channel");

PCAN_CHANNEL_FEATURES
This parameter is used to obtain information about the special properties of the device being
used.

Availability
It is available since version 4.0.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values

The information about special features is returned as a “flag” value. At the moment this

documentation was written only the following flags were defined:

1) FD_CAPABLE: Indicates that the channel supports Flexible Data rate communication.

Note: To communicate using the new CAN-FD specification, a channel must be FD capable

and must be initialized with the function CAN_InitializeFD. After a successful initialization,

the CAN communication is carried out by the functions CAN_ReadFD and CAN_WriteFD. Note

that FD capable channels and the FD functions can be used for non-FD communication too,

i.e., CAN data as specified in the norm 1SO 11898 (CAN 2.0 A/B).

2) DELAY_CAPABLE: Indicates that the channel supports the configuration of a delay, in
microsecond resolution, between sending frames.

Note: Only FPGA based devices with a firmware version equal to or greater than 2.4.0

support this feature. At the moment this documentation was written only the FPGA based

USB devices were able to support delay configuration.

4) 10_CAPABLE: Indicates that the hardware represented by a channel is equipped with 1/0
pins and that those can be configured.

Note: Currently, only PCAN-Chip USB devices support using I/O parameters.

Default Value
Does not apply.

Initialization Status
This parameter can be used with both, initialized and uninitialized PCAN-Channels.

When to Use
It can be used to decide the initialization mode of a PCAN channel, according with its
capabilities.

Application - Example of Use
Let’s say that your application was updated to support using USB FD hardware. This means,
now your application needs to inform the user whether an attached USB hardware is FD
capable, to be able to initialize it as FD. You could use this parameter to show a list of FD
capable hardware to the user (it is assumed that there are 4 USB channels available):

Native (C++)

TPCANHandle channelsToCheck[] = { PCAN_USBBUS1, PCAN_USBBUS2, PCAN_USBBUS3, PCAN_USBBUS4 };
DWORD features;

printf("CAN-FD capable channels:\n");
for (int i = @; 1 < 4; i++)

if (CAN_GetValue(channelsToCheck[i], PCAN_CHANNEL_FEATURES, &features, sizeof(features)) ==
PCAN_ERROR_OK)

{
if ((features & FEATURE_FD_CAPABLE) == FEATURE_FD_CAPABLE)

printf("Channel 0x%X\n", channelsToCheck[i]);

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

[}

Managed (Ci#)

ushort[] channelsToCheck = { PCANBasic.PCAN_USBBUS1, PCANBasic.PCAN_USBBUS2, PCANBasic.PCAN_USBBUS3,
PCANBasic.PCAN_USBBUS4 };
uint features;

Console.WriteLine("CAN-FD capable channels:");
for (int i = @; 1 < 4; i++)

if (PCANBasic.GetValue(channelsToCheck[i], TPCANParameter.PCAN_CHANNEL_FEATURES, out features,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

if ((features & PCANBasic.FEATURE_FD_CAPABLE) == PCANBasic.FEATURE_FD_CAPABLE)
Console.WriteLine("Channel @x{@:X}", channelsToCheck[i]);

}
}

}

PCAN_BITRATE_INFO

This parameter is used to obtain information about the bit rate being used, when a channel
was initialized using the function CAN_Initialize.

Availability
It is available since version 4.0.0.
It can be read without initialization since version 4.4.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
This value has a resolution of Word (range [0... 65535]), which represents bit rate registers
(BTRO-BTR1), for a CAN controller SJA1000.

Default Value
Does not apply.

Initialization Status
Get: It can be read on initialized or uninitialized PCAN-Channels.

When to Use
It can be used to obtain the BTROBTR1 value representing the bit rate being used.

Application - Example of Use
Let’s say that you have connected a channel (PCAN_USBBUS1), using the parameter
PCAN_BITRATE_ADAPTING. After connecting you realize that the bit rate being used is
different from the given one. This parameter lets you know the bit rate used, so you can

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

inform the user about the actual bit rate value used for communication (it is assumed, a USB
channel is connected at a bitrate other than 500 kBit/s):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD adaptToBitrate = PCAN_PARAMETER_ON;
DWORD bitrateInfo;

TPCANStatus result;

if (CAN_SetValue(channelUsed, PCAN_BITRATE_ADAPTING, &adaptToBitrate, sizeof(adaptToBitrate)) ==
PCAN_ERROR_OK)
{

result = CAN_Initialize(channelUsed, PCAN_BAUD_500K);

if (result == PCAN_ERROR_OK)

printf("Channel successfully initialized with BTROBTR1 @x%X", PCAN_BAUD_500K);
}
else

if (result == PCAN_ERROR_CAUTION)

if(CAN_GetValue(channelUsed, PCAN_BITRATE_INFO, &bitrateInfo, sizeof(bitrateInfo)) ==
PCAN_ERROR_OK)
printf("Channel successfully connected. Bitrate adapted to BTROBTR1 @x%X", bitrateInfo);
else
printf("Error! Could not get the BITRATE_INFO value.");
}
else
printf("Error! Channel could not be initialized.");
}
else
printf("Error! Channel not activate the feature PCAN_BITRATE_ADAPTING.");

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;

uint adaptToBitrate = PCANBasic.PCAN_PARAMETER_ON;
uint bitrateInfo;

TPCANStatus result;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_BITRATE_ADAPTING, ref adaptToBitrate, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)
{

result = PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K);

if (result == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("Channel successfully initialized with BTR@BTR1 ©x%X",
TPCANBaudrate.PCAN_BAUD_500K) ;
}
else
if (result == TPCANStatus.PCAN_ERROR_CAUTION)

if (PCANBasic.GetValue(channelUsed, TPCANParameter.PCAN_BITRATE_INFO, out bitrateInfo,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)
Console.WriteLine("Channel successfully connected. Bitrate adapted to BTR@BTR1l @x{@:X}",

bitrateInfo);
else
Console.WriteLine("Error! Could not get the BITRATE_INFO value.");
}
else
Console.WriteLine("Error! Channel could not be initialized.");
}
else

Console.WriteLine("Error! Channel not activate the feature PCAN_BITRATE_ADAPTING.");

PCAN_BITRATE_INFO_FD

This parameter is used to obtain information about the bit rate being used when a channel
was initialized using the function CAN_InitializeFD.

Availability
It is available since version 4.0.0.
It can be read without initialization since version 4.4.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

PCAN-DNG (Channel PCAN_DNGBUS1).

PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
Possible values are strings representing the nominal and data bit rate (see TPCANBitrateFD
chapter in the online help of PCAN-Basic) used by a FD capable hardware.

Default Value
Does not apply.

Initialization Status
Get: It can be read on initialized or uninitialized PCAN-Channels.

When to Use
It can be used to obtain the TPCANBitrateFD value representing the bit rate being used.

Application - Example of Use
Let’s say that you have connected a channel (PCAN_USBBUS1), using the parameter
PCAN_BITRATE_ADAPTING. After connecting you realize the bit rate being used is different
from the given one. Asking this parameter lets you know the bit rate used, so you can inform
the user about the actual bit rate value used for communication (it is assumed, a USB
channel is connected at a bitrate other than 500 kBit/s / 2 MB/s):

Native (C++)

#define PCAN_BITRATE_SAE_J2284 4
(LPSTR)"f_clock=80000000,nom_brp=2,nom_tsegl=63,nom_tseg2=16,nom_sjw=16,data_brp=2,data_tsegl=15,data_tseg2=
4,data_sjw=4"

TPCANHandle channelUsed = PCAN_USBBUS1;

DWORD adaptToBitrate = PCAN_PARAMETER_ON;

char bitrateInfoFD[MAX_LENGTH_VERSION_STRING] = { © };
TPCANStatus result;

if (CAN_SetValue(channelUsed, PCAN_BITRATE_ADAPTING, &adaptToBitrate, sizeof(adaptToBitrate)) ==
PCAN_ERROR_OK)
{

result = CAN_InitializeFD(channelUsed, PCAN_BITRATE_SAE_J2284_4);

if (result == PCAN_ERROR_OK)

printf(“"Channel successfully initialized with FD-Bitrate %s", PCAN_BITRATE_SAE_J2284 _4);
¥
else

{
if (result == PCAN_ERROR_CAUTION)

if (CAN_GetValue(channelUsed, PCAN_BITRATE_INFO_FD, bitrateInfoFD, MAX_LENGTH_VERSION_STRING) ==
PCAN_ERROR_OK)
printf("Channel successfully connected. Bitrate adapted to FD-Bitrate %s", bitrateInfoFD);
else
printf("Error! Could not get the BITRATE_INFO_FD value.");
}
else
printf("Error! Channel could not be initialized.");
}

}

else
printf("Error! Channel not activate the feature PCAN_BITRATE_ADAPTING.");

_

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Managed (Ci#)

const string PCAN_BITRATE_SAE_J2284_4 =
"f_clock=80000000, nom_brp=2,nom_tsegl=63,nom_tseg2=16,nom_sjw=16,data_brp=2,data_tsegl=15,data_tseg2=4,data_
sjw=4";

ushort channelUsed = PCANBasic.PCAN_USBBUS1;

uint adaptToBitrate = PCANBasic.PCAN_PARAMETER_ON;

StringBuilder bitrateInfoFD = new StringBuilder(PCANBAsic.MAX_LENGTH_VERSION_STRING);
TPCANStatus result;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_BITRATE_ADAPTING, ref adaptToBitrate, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)
{

result = PCANBasic.InitializeFD(channelUsed, PCAN_BITRATE_SAE_J2284 4);

if (result == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("Channel successfully initialized with FD-Bitrate {@}", PCAN_BITRATE_SAE_J2284_4);
¥

else

{
if (result == TPCANStatus.PCAN_ERROR_CAUTION)

if (PCANBasic.GetValue(channelUsed, TPCANParameter.PCAN_BITRATE_INFO_FD, bitrateInfoFD,
PCANBasic.MAX_LENGTH_VERSION_STRING) == TPCANStatus.PCAN_ERROR_OK)
Console.WriteLine("Channel successfully connected. Bitrate adapted to FD-Bitrate {0}",

bitrateInfoFD);
else
Console.WriteLine("Error! Could not get the BITRATE_INFO_FD value.");
}
else
Console.WriteLine("Error! Channel could not be initialized.");
}
}
else

Console.WriteLine("Error! Channel not activate the feature PCAN_BITRATE_ADAPTING.");

L

PCAN_BUSSPEED_NOMINAL

This parameter is used to obtain information about the currently used nominal CAN Bus
speed, in bits per second.

Availability
It is available since version 4.0.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
This value has a resolution of a Double-Word (range [0... 4294967295]).

Default Value
Does not apply.

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

When to Use
It can be used to show a friendly bit rate value, which can be understood well and fast by any

user.

Application - Example of Use
Let’s say that you have connected a channel (PCAN_USBBUS1), using the parameter
PCAN_BITRATE_ADAPTING. After connecting you realize the bit rate being used is different
from the given one. Since the configured bit rate could be based on unknown BTRO-BTR1
values, maybe you will not be able to decode this by yourself. This parameter lets you just
ask this “decoded” value, so you can be able to show the bit rate used in bits/s, Kbits/s,
Mbit/s, etc., instead of its coded bit rate values (like the bit rate registers), which are not
intuitive (it is assumed, a USB channel is connected at a bitrate other than 500 kBit/s): \J

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD adaptToBitrate = PCAN_PARAMETER_ON;
DWORD bitrateSpeedNominal;

TPCANStatus result;

if (CAN_SetValue(channelUsed, PCAN_BITRATE_ADAPTING, &adaptToBitrate, sizeof(adaptToBitrate)) ==
PCAN_ERROR_OK)
{

result = CAN_Initialize(channelUsed, PCAN_BAUD_500K);

if (result == PCAN_ERROR_OK)

printf("Channel successfully initialized at 500 kBit/s");
else
if (result == PCAN_ERROR_CAUTION)

if (CAN_GetValue(channelUsed, PCAN_BUSSPEED_NOMINAL, & bitrateSpeedNominal,
sizeof(bitrateSpeedNominal)) == PCAN_ERROR_OK)
printf("Channel successfully connected. Bitrate adapted to %g kBit/s", bitrateSpeedNominal /
1000.0);
else
printf("Error! Could not get the PCAN_BUSSPEED_NOMINAL value.");
}
else
printf("Error! Channel could not be initialized.");

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;

uint adaptToBitrate = PCANBasic.PCAN_PARAMETER_ON;
uint bitrateSpeedNominal;

TPCANStatus result;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_BITRATE_ADAPTING, ref adaptToBitrate, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)
{

result = PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) ;

if (result == TPCANStatus.PCAN_ERROR_OK)

{
}

else

Console.WriteLine("Channel successfully initialized at 500 kBit/s");

if (result == TPCANStatus.PCAN_ERROR_CAUTION)

{
if (PCANBasic.GetValue(channelUsed, TPCANParameter.PCAN_BUSSPEED_NOMINAL, out
bitrateSpeedNominal, sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)
Console.WriteLine("Channel successfully connected. Bitrate adapted to {0} kBit/s",
bitrateSpeedNominal / 1000.0);
else
Console.WriteLine("Error! Could not get the PCAN_BUSSPEED_NOMINAL value.");
}
else
Console.WriteLine("Error! Channel could not be initialized.");
}
}

else
Console.WriteLine("Error! Channel not activate the feature PCAN_BITRATE_ADAPTING.");

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

PCAN_BUSSPEED_DATA
This parameter is used to obtain information about the currently used CAN data speed (Bit
rate Switch), in bits per second.

Availability
It is available since version 4.0.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
This value has a resolution of a Double-Word (range [0... 4294967295]).

Default Value
Does not apply.

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used to show a friendly bit rate value, which can be understood well and fast by any

user.

Application - Example of Use

Let's say that you have connected a channel (PCAN_USBBUS1), using the parameter
PCAN_BITRATE_ADAPTING. After connecting you realize the bit rate being used is different
from the given one. Since the configured bit rate could be based on unknown bit rate values,
maybe you will not be able to decode this by yourself. This parameter lets you just ask this
“decoded” value, so you can be able to show the bit rate used in bits/s, Kbits/s, Mbit/s, etc.,
instead of its coded bit rate values (clock frequency, sample jump with, etc.), which are not
intuitive (it is assumed, a USB channel is connected at a bitrate other than 500 kBit/s / 2
MB/s):

Native (C++)

#define PCAN_BITRATE_SAE_J2284_4
(LPSTR)"f_clock=80000000,nom_brp=2,nom_tsegl=63,nom_tseg2=16,nom_sjw=16,data_brp=2,data_tsegl=15,data_tseg2=
4,data_sjw=4"

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD adaptToBitrate = PCAN_PARAMETER_ON;
DWORD bitrateSpeedNominal, bitrateSpeedData;
TPCANStatus result;

if (CAN_SetValue(channelUsed, PCAN_BITRATE_ADAPTING, &adaptToBitrate, sizeof(adaptToBitrate)) ==
PCAN_ERROR_OK)

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

result = CAN_InitializeFD(channelUsed, PCAN_BITRATE_SAE_J2284_4);
if (result == PCAN_ERROR_OK)

printf("Channel successfully initialized at FD-Bitrate 500 kBit/s / 2 MB/s");

else

{
if (result == PCAN_ERROR_CAUTION)

if ((CAN_GetValue(channelUsed, PCAN_BUSSPEED_NOMINAL, &bitrateSpeedNominal,
sizeof(bitrateSpeedNominal)) == PCAN_ERROR_OK) &&
(CAN_GetValue(channelUsed, PCAN_BUSSPEED_DATA, &bitrateSpeedData, sizeof(bitrateSpeedData))
== PCAN_ERROR_OK))
printf("Channel successfully connected. Bitrate adapted to %g kBit/s / %g MB/s",
bitrateSpeedNominal / 1000.0, bitrateSpeedData / 1000000.0);
else
printf("Error! Could not get the BUS SPEED information.");
}
else
printf("Error! Channel could not be initialized.");

}
else
printf("Error! Channel not activate the feature PCAN_BITRATE_ADAPTING.");

Managed (Ci#)

const string PCAN_BITRATE_SAE_J2284 4 =
"f_clock=80000000, nom_brp=2,nom_tsegl=63,nom_tseg2=16,nom_sjw=16,data_brp=2,data_tsegl=15,data_tseg2=4,data_
sjw=4";

ushort channelUsed = PCANBasic.PCAN_USBBUS1;

uint adaptToBitrate = PCANBasic.PCAN_PARAMETER_ON;
uint bitrateSpeedNominal, bitrateSpeedData;
TPCANStatus result;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_BITRATE_ADAPTING, ref adaptToBitrate, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)
{

result = PCANBasic.InitializeFD(channelUsed, PCAN_BITRATE_SAE_J2284_4);

if (result == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("Channel successfully initialized at 500 kBit/s / 2 MB/s");
}

else

{
if (result == TPCANStatus.PCAN_ERROR_CAUTION)

if ((PCANBasic.GetValue(channelUsed, TPCANParameter.PCAN_BUSSPEED_NOMINAL, out
bitrateSpeedNominal, sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK) &&
(PCANBasic.GetValue(channelUsed, TPCANParameter.PCAN_BUSSPEED_DATA, out bitrateSpeedData,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK))
Console.WriteLine("Channel successfully connected. Bitrate adapted to {0} kBit/s / {1}

MB/s",
bitrateSpeedNominal / 1000.0, bitrateSpeedData / 1000000.90);
else
Console.WriteLine("Error! Could not get the BUS SPEED information.");
}
else
Console.WriteLine("Error! Channel could not be initialized.");
}
}
else

Console.WriteLine("Error! Channel not activate the feature PCAN_BITRATE_ADAPTING.");

PCAN_LAN_SERVICE_STATUS
This parameter is used to obtain the running status of the System service that is part of the
Virtual PCAN-Gateway solution. This service works together with the device driver PCAN-
LAN. Both make the interaction with PCAN-LAN hardware possible (PCAN-Gateway
Ethernet/Wireless) by using the PCAN environment in a Windows system.

Availability
It is available since version 4.1.0.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Supported By
PCAN_NONEBUS: The status of the service is not tied to any channel connection, i.e. no
specific channel can be used for this query.

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
The status of the Virtual PCAN-Gateway service can be one of the following defined values:

Defined Value Description \
SERVICE_STATUS_STOPPED The service is not running, i.e. stopped or
in a state different than ‘running’.
SERVICE_STATUS_RUNNING The service is running.
Default Value

Does not apply.

Initialization Status
Not relevant since this parameter is not channel dependent.

When to Use
It can be used to ensure that the Virtual PCAN-Gateway communication is working.

Application - Example of Use

Let’s say that you have written an application that connects always automatically to the first PCAN-
LAN channel within a timeout of 20 seconds, and that your application is automatically launched
when Windows starts. Now let’s say that, for some reason, the service starts with a delay of 30
seconds. In this case, your application would be never able to connect the channel, because the
timeout would be reached before a LAN channel can be initialized. To avoid this, you could check in
your application first if the service is running before trying to connect the channel:

Native (C++)

L

DWORD serviceState;
TPCANStatus result;

do
{

// Check for the status of the service with an interval of 1 second

printf("Checking status of PCAN-LAN Service...\n");

Sleep(1000);

result = CAN_GetValue(PCAN_NONEBUS, PCAN_LAN_SERVICE_STATUS, &serviceState, sizeof(serviceState));

} while ((result == PCAN_ERROR_OK) && (serviceState != SERVICE_STATUS_RUNNING));
if (result == PCAN_ERROR_OK)
printf("The PCAN-LAN service is running. Proceed to establish a connection...");

else
printf("Error! The status of the PCAN-LAN service could not be retrieved");

Managed (Ci#)

uint serviceState;
TPCANStatus result;

do
// Check for the status of the service with an interval of 1 second

Console.WriteLine("Checking status of PCAN-LAN Service...");
System.Threading.Thread.Sleep(1000);

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

result = PCANBasic.GetValue(PCANBasic.PCAN_NONEBUS, TPCANParameter.PCAN_LAN_SERVICE_STATUS, out
serviceState, sizeof(uint));

} while ((result == TPCANStatus.PCAN_ERROR_OK) & (serviceState != PCANBasic.SERVICE_STATUS_RUNNING));
if (result == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("The PCAN-LAN service is running. Proceed to establish a connection...");

}

else
Console.WriteLine("Error! The status of the PCAN-LAN service could not be retrieved");

PCAN_FIRMWARE_VERSION

This parameter is used to get the firmware version of the PCAN device associated with a
PCAN channel. @

Availability
It is available since version 4.4.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
The API version value is represented as a string of the form “a.b.c”, where:
a: represents the major version number.
b: represents the minor version number.
c: represents the release version number.
All three values have a maximum size of 16 bits that allows a value of 65535 per each. The
returned value is a null terminated string with a maximum length of 18 bytes. It is
recommended to use a buffer that large to guaranty success in any case.

Default Value
Does not apply.

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used to determine if a device is up-to-date, or just as informative output in an
application.

Application - Example of Use
Let’s say that you want to show information about the PCAN hardware being used in your
application, so that a user can get back to you with versioning information if physical

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

problems arise. This would allow you to check, if his/her problem(s) could be caused by an
outdated firmware (it is assumed, a USB channel is connected):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
char version[MAX_LENGTH_VERSION_STRING] = { © };

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

if (CAN_GetValue(channelUsed, PCAN_FIRMWARE_VERSION, version, MAX_LENGTH_VERSION_STRING) ==
PCAN_ERROR_OK)

{
printf("Firmware version: %s", version);
}
else
printf("Error! Could not retrieve the firmware version.");
}
else
printf("Error! Could not initialize the channel 0x%X", channelUsed);

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
StringBuilder version = new StringBuilder(PCANBasic.MAX_LENGTH_VERSION_STRING);

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

if (PCANBasic.GetValue(channelUsed, TPCANParameter.PCAN_FIRMWARE_VERSION, version,
PCANBasic.MAX_LENGTH_VERSION_STRING) == TPCANStatus.PCAN_ERROR_OK)

{
Console.WriteLine("Firmware version: {0}", version);
}
else
Console.WriteLine("Error! Could not retrieve the firmware version.");
}
else

Console.WriteLine("Error! Could not initialize the channel 0x{@:X}.", channelUsed);

PCAN_ATTACHED_CHANNELS_COUNT
This parameter is used to get information about all existing PCAN channels on a system in a
single call, regardless of their current availability (see CHANNEL CONDITION).

This parameter is very tied to another, PCAN ATTACHED CHANNELS. It returns a buffer of
structures of type “TPCANChannelinformation”, containing channels data. The size in bytes
of this buffer is calculated using the result of PCAN_ATTACHED_CHANNELS_COUNT
multiplied by the size of the structure TPCANChannellnformation.

Availability
It is available since version 4.4.0.

Supported By
PCAN-NONEBUS: The number of available channels is not tied to any channel, i.e., no specific
channel can be used for this query.

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
A number in the range [0...n], where n is the sum of the maximum supported channels per
device. At the time of writing this documentation a maximum of 59 channels can be handled
simultaneously: 1 PCAN-Dongle, 2 PCAN-PCC, 8 PCAN-ISA, 16 PCAN-PCI, 16 PCAN-USB, and
16 PCAN-LAN devices.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Default Value
Does not apply.

Initialization Status
Not relevant since this parameter does not depend on a specific channel.

When to Use
It can be used to determine if any channels are currently present on the system or to calculate the

size of a buffer for getting information about those channels, if needed.

Application - Example of Use
Commonly, an application first shows the connection possibilities it has, before starting with
a specific work. This implies searching the system for connectable channels, their names,
capabilities, and other characteristics that may help choosing a device to work with.
According to the programming language used, it is needed to generate a buffer big enough
to store information about those existing channels. This parameter is then used to calculate
the size of that buffer.

Native (C++)

DWORD channelsCount;

if (CAN_GetValue(PCAN_NONEBUS, PCAN_ATTACHED_CHANNELS_COUNT, &channelsCount, sizeof(channelsCount)) ==
PCAN_ERROR_OK)
{

printf("Total of %d channels were found:\n", channelsCount);

if (channelsCount > 0)

TPCANChannelInformation* channels = new TPCANChannelInformation[channelsCount];
if (CAN_GetValue(PCAN_NONEBUS, PCAN_ATTACHED_CHANNELS, channels, channelsCount *
sizeof(TPCANChannelInformation)) == PCAN_ERROR_OK)

for (int i = @; i < (int)channelsCount; i++)

{
printf("%d) -------------------me - \n", i+ 1);
printf(" Name: %s\n", channels[i].device_name);
printf(" Handle: @x%X\n", channels[i].channel_handle);
printf("Controller: %d\n", channels[i].controller_number);
printf(" Condition: %d\n", channels[i].channel_condition);
printf(" \n");

}

delete[] channels;

Managed (Ci#)

uint channelsCount;

if (PCANBasic.GetValue(PCANBasic.PCAN_NONEBUS, TPCANParameter.PCAN_ATTACHED_CHANNELS_COUNT, out
channelsCount, sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)
{
Console.WriteLine("Total of {@} channels were found:", channelsCount);
if (channelsCount > 0)
{
TPCANChannelInformation[] channels = new TPCANChannelInformation[channelsCount];
if (PCANBasic.GetValue(PCANBasic.PCAN_NONEBUS, TPCANParameter.PCAN_ATTACHED_CHANNELS, channels) ==
TPCANStatus.PCAN_ERROR_OK)

for (int i = @; i < channelsCount; i++)

{
Console.WriteLine("{@}) --------------------------- \n", i+ 1);
Console.WriteLine(" Name: {@}", channels[i].device_name);
Console.WriteLine(" Handle: ox{@:X}", channels[i].channel_handle);
Console.WriteLine("Controller: {@}", channels[i].controller_number);
Console.WriteLine(" Condition: {@}", channels[i].channel_condition);
Console.WriteLine(" N8

_

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

PCAN_LAN_CHANNEL_DIRECTION

This parameter is used to get the communication flow used by a PCAN-LAN device associated
with a PCAN-Channel.

Since the logical connection of PCAN-LAN device is done using routes, it is possible to
configure channels to don’t transport data in a bidirectional way like usually CAN devices do.

Availability
It is available since version 4.9.0.

Supported By 0
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16). \J

Access Mode
This parameter can only be read. It cannot be modified.

Possible Values
The communication flow of a PCAN LAN channel can be one of the following defined values:

Defined Value Description

LAN_DIRECTION_READ The PCAN-Channel is limited to incoming
communication only.
LAN_DIRECTION_WRITE The PCAN-Channel is limited to outgoing
communication only.
LAN_DIRECTION_READ OR The PCAN-Channel communication is
LAN_DIRECTION_WRITE bidirectional.
Default Value

Does not apply.

Initialization Status
Get: It can be read on initialized or uninitialized PCAN-Channels.

When to Use
It can be used to determine the communication flow of a LAN device represented by a PCAN-
Channel.

Application - Example of Use
Let’s say that you must use a PCAN-LAN device, but you do not know if you can use them for
sending CAN data, as you have no access to its configuration. You can just ask the
communication direction of it and see if it supports sending:

Native (C++)
TPCANHandle channelUsed = PCAN_LANBUS1;
DWORD iChannelDirection;

TPCANStatus stsResult = CAN_GetValue(channelUsed, PCAN_LAN_CHANNEL_DIRECTION, &iChannelDirection,
sizeof(iChannelDirection));

if (stsResult == PCAN_ERROR_OK)
if (iChannelDirection & LAN_DIRECTION_WRITE)

printf("The channel can forward messages to the PCAN-LAN device.");
else

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

printf("The channel CANNOT forward messages to the PCAN-LAN device.");
}
else
printf("Error! Couldn’t get the direction information for channel @x%X.", channelUsed);

Managed (C#)

ushort channelUsed = PCANBasic.PCAN_LANBUS1;

TPCANStatus stsResult = PCANBasic.GetValue(channelUsed, TPCANParameter.PCAN_LAN_CHANNEL_DIRECTION, out uint
iChannelDirection, sizeof(uint));

if (stsResult == TPCANStatus.PCAN_ERROR_OK)

if ((iChannelDirection & PCANBasic.LAN_DIRECTION_WRITE) == PCANBasic.LAN_DIRECTION_WRITE)
Console.WriteLine("The channel can forward messages to the PCAN-LAN device.");
else
Console.WriteLine("The channel CANNOT forward messages to the PCAN-LAN device.");
}
else
Console.WriteLine("Error! Couldn’t get the direction information for channel @x{0:X}.", channelUsed);

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Using Special Behaviors

These parameters are intended to activate some modes on the devices being used that cause those
devices to react or work in an exceptional way.

Note that not all modes are supported by all kind of devices.

PCAN_5VOLTS_POWER
This parameter is used for switching the external 5V on the D-Sub connector of a PCAN-
Device. This is useful when connecting external bus converter modules to the card (AU5790 /
TJA1054)).

Availability
Available since version 1.0.0.
It can be read without initialization since version 4.4.0.

Supported By
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).

Notes:
PCAN-USB: only the devices of type “PCAN-USB Hub” can support this parameter.

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter represents an extra voltage that can be activated or deactivated.

Defined Value Description ‘
PCAN_PARAMETER_OFF The external 5V on the D-Sub connector is
inactive.
PCAN_PARAMETER_ON The external 5V on the D-Sub connector is
active.
Default Value

The default state of extra voltage is inactive (PCAN_PARAMETER_OFF). After activating it, the
extra 5V stays on the D-Sub until it is expressly deactivated, or the device is reinitialized
(plugged-out and plugged-in again, or PC-reboot).

Initialization Status
Get: It can be read on initialized or uninitialized PCAN-Channels.
Set: It can be set on initialized PCAN-Channels only.

When to Use
It can be used when connecting external bus converter modules to a device, so that it is also
supplied with power.

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Application - Example of Use
Let’s say that your application is connected to a Single-Wired CAN network using a PC-Card
Channel. A Bus-Converter (e.g., High-speed to Single-Wire CAN) is also connected to the
channel used. It will be used only in special cases when you want to transfer software or
diagnostic data. You will need to use the PCAN_5VOLTS_POWER to allow the adapter to
work (it is assumed a PCAN-PC Card is used):

Native (C++)

TPCANHandle channelUsed = PCAN_PCCBUS1;
DWORD powerState = PCAN_PARAMETER_ON;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

if (CAN_SetValue(channelUsed, PCAN_5VOLTS_POWER, &powerState, sizeof(powerState)) == PCAN_ERROR_OK)

{
printf("The 5V power on channel 0x%X is now active\n", channelUsed);
printf("Start working...\n");
// Do needed work
printf("Work finished!\n");
powerState = PCAN_PARAMETER_OFF;
if (CAN_SetValue(channelUsed, PCAN_5VOLTS_POWER, &powerState, sizeof(powerState)) == PCAN_ERROR_OK)
printf("The 5V power on channel 0x%X is now deactivated", channelUsed);
else
printf("Error! The 5V power could not be disabled.\n");
printf("....Risk of damage if short circuit....");
}
}
else
printf("Error! The 5V power could not be enabled.");
}
else

printf("Error! Channel could not be initialized.");

L

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_PCCBUS1;
uint powerState = PCANBasic.PCAN_PARAMETER_ON;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_S5VOLTS_POWER, ref powerState, sizeof(uint)) ==
TPCANStatus.PCAN_ERROR_OK)
{

Console.WriteLine("The 5V power on channel @x{@:X} is now active", channelUsed);

Console.WriteLine("Start working...");

// Do needed work

Console.WriteLine("Work finished!");

powerState = PCANBasic.PCAN_PARAMETER_OFF;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_5VOLTS_POWER, ref powerState, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)

{
Console.WriteLine("The 5V power on channel 0x{0:X} is now deactivated", channelUsed);
}
else
{
Console.WriteLine("Error! The 5V power could not be disabled.");
Console.WriteLine("....Risk of damage if short circuit....");
}
}
else
Console.WriteLine("Error! The 5V power could not be enabled.");
}
else

Console.WriteLine("Error! Channel could not be initialized.");

PCAN_BUSOFF_AUTORESET
This parameter instructs the PCAN driver to automatically reset the CAN controller of a PCAN
Channel when a bus-off state is detected.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Availability
It is available since version 1.0.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS?2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter can be activated or deactivated.

Defined Value Description \

PCAN_PARAMETER_OFF The automatic Hardware reset is OFF.

PCAN_PARAMETER_ON The automatic Hardware reset is ON.
Default Value

The default state of the automatic reset on bus-off is inactive (PCAN_PARAMETER_OFF).
After activating it, the automatic reset stays active until it is expressly deactivated, or the
channel is disconnected (e.g., using the function CAN_Uninitialize).

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used to avoid resetting a device manually, after it has reached a bus-off state, for
instance, when an application should work unattended, and it is known that bus-off error
may occur.

Application - Example of Use

Let’s say that your application is running some diagnostics on an Electronic Control unit (ECU)
of a car, and this ECU is battery powered (car switch on and off). Having an application
communicating to the same CAN Network and having the ECU switching on and off can cause
the PCAN-Channel (hardware, CAN Controller) to reach the OFF status. No communication
can be achieved until the OFF status disappears. To avoid the need to manually reset the
application/PCAN-Channel each time the car is switch on or off, you can use this parameter
to do this automatically for you (it is assumed, a USB channel is connected):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD autoResetState = PCAN_PARAMETER_ON;

if (CAN_Initialize(channelUsed, PCAN_BAUD_5@0K) == PCAN_ERROR_OK)

if (CAN_SetValue(channelUsed, PCAN_BUSOFF_AUTORESET, &autoResetState, sizeof(autoResetState)) ==
PCAN_ERROR_OK)
{
printf("The channel 0x%X will be reset automatically on bus-off state.\n", channelUsed);
printf("Start working...\n");

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

// Do needed work
printf("Work finished!\n");

else
printf("Error! The automatic bus-off reset could not be activated");
}

else
printf("Error! Channel could not be initialized.");

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint autoResetState = PCANBasic.PCAN_PARAMETER_ON;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_BUSOFF_AUTORESET, ref autoResetState,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)
{

Console.WriteLine("The channel ©x{0:X} will be reset automatically on bus-off state.", channelUsed);
Console.WriteLine("Start working...");
// Do needed work
Console.WriteLine("Work finished!");
}
else
Console.WriteLine("Error! The automatic bus-off reset could not be activated");
}
else
Console.WriteLine("Error! Channel could not be initialized.");

PCAN_LISTEN_ONLY
This parameter allows the user to set the CAN device represented by a PCAN-Channel in
Listen-Only mode. When this mode is set, the CAN controller doesn't take part on active
events (e.g., transmit CAN messages) but stays in a passive mode (CAN monitor), in which it
can analyze the traffic on the CAN bus used by a PCAN channel. See also the Philips Data
Sheet "SJA1000 Stand-alone CAN controller".

This parameter is a so called “pre-initialized” parameter, which means that it can be set
before a PCAN-Channel is initialized to activate/deactivate the parameter as fast as possible,
in this way avoiding problems that can appear within sensitive operations.

Availability
It is available since version 1.0.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.
Note: On PCAN-LAN devices, the Listen-Only mode cannot be set over this parameter. It can
only be changed directly on the device, by using its configuration interface.

Possible Values
This parameter can be activated or deactivated.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0
Defined Value Description

PCAN_PARAMETER_OFF The Listen-only mode is OFF.
PCAN_PARAMETER_ON The Listen-Only mode is ON.
Default Value

The default state of the Listen-Only mode is deactivated (PCAN_PARAMETER_OFF). After
activating it, the Listen-Only mode stays active until it is expressly deactivated, or the channel
is disconnected (e.g., using the function CAN_Uninitialize).

Initialization Status
This parameter can be used in initialized or uninitialized channels.

When to Use
It can be used when an application wants to passively inspect the data being transferred
within a CAN network, without causing any perturbation on it.

Application - Example of Use

Let’s say that your application must work in an environment where only 4 different bit rates
are used. Since the 4-bit rates are known you want to offer the possibility to auto detect the
bit rate that is currently configured in a CAN network at connection time. You could use this
parameter to passively connect to a network using different bit rates without causing errors
when connecting with a wrong bit rate. In this way your application can recognize the bit rate
being used, and the communication is not affected while this procedure is done (it is
assumed, a USB channel is connected and there is communication on the bus within 1
second using one of the tested bitrates):

Native (C++)

TPCANBaudrate baudrates[] = { PCAN_BAUD_125K, PCAN_BAUD_250K, PCAN_BAUD_500K, PCAN_BAUD_1M };
TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD listenOnlyState = PCAN_PARAMETER_ON;
TPCANMsg msg;
printf("Checking the current bitrate on channel @x%X\n", channelUsed);
for (int i = @; 1 < 4; i++)
if (CAN_SetValue(channelUsed, PCAN_LISTEN_ONLY, &listenOnlyState, sizeof(listenOnlyState)) ==
PCAN_ERROR_OK)
{
if (CAN_Initialize(channelUsed, baudrates[i]) == PCAN_ERROR_OK)
{
printf("..... ")
// Wait 1 second before trying to get a message
Sleep(1000);
// If a message is received, then bitrate was found
if (CAN_Read(channelUsed, &msg, NULL) == PCAN_ERROR_OK)
printf("\nBitrate (BTROBTR1l) used is @x%X", baudrates[i]);
break;
CAN_Uninitialize(channelUsed);
}
else
printf("Error! Channel could not be initialized.");
break;
}
}
else
{
printf("Error! The listen-only feature could not be activated");
break;
}
¥

_

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Managed (Ci#)

TPCANBaudrate[] baudrates = { TPCANBaudrate.PCAN_BAUD_125K, TPCANBaudrate.PCAN_BAUD_250K,
TPCANBaudrate.PCAN_BAUD_500K, TPCANBaudrate.PCAN_BAUD_1M };

ushort channelUsed = PCANBasic.PCAN_USBBUS1;

uint listenOnlyState = PCANBasic.PCAN_PARAMETER_ON;

TPCANMsg msg;

Console.WriteLine("Checking the current bitrate on channel 0x{@:X}", channelUsed);
for (int i = @; 1 < 4; i++)

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_LISTEN_ONLY, ref listenOnlyState, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)

if (PCANBasic.Initialize(channelUsed, baudrates[i]) == TPCANStatus.PCAN_ERROR_OK)

{
Console.Write("..... ")
// Wait 1 second before trying to get a message
System.Threading.Thread.Sleep(1000);
// If a message is received, then bitrate was found
if (PCANBasic.Read(channelUsed, out msg) == TPCANStatus.PCAN_ERROR_OK)
Console.WriteLine("\nBitrate (BTROBTR1) used is @x{0:X}", baudrates[i]);
break;
PCANBasic.Uninitialize(channelUsed);
}
else
{
Console.WriteLine("Error! Channel could not be initialized.");
break;
}
}
else
Console.WriteLine("Error! The listen-only feature could not be activated");
break;
}

PCAN_BITRATE_ADAPTING
This parameter allows the user to connect to an active PCAN-Channel when the bit rate used
is unknown. When this mode is set, PCAN-Basic will try first to use the bit rate given as
parameter in the initialization process; if the channel has a different bit rate configured, then
the new connection will use the configured bit rate and the initialization function will return
a warning value, indicating that the used bit rate differs from the given one.

This parameter is a so called “pre-initialized only” parameter, which means that it can be
only set before a PCAN-Channel is initialized.

Availability
It is available since version 4.0.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS?2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Possible Values
This parameter can be activated or deactivated.

Defined Value Description \

PCAN_PARAMETER_OFF The Bitrate-Adapting feature is OFF.

PCAN_PARAMETER_ON The Bitrate-Adapting feature is ON.
Default Value

The default state of the Bitrate-Adapting mode is deactivated (PCAN_PARAMETER_OFF). This
parameter has effect only at initialize time. It cannot be set after activating a channel. The
parameter returns to its default value after calling the initialize/InitializeFD function.

Initialization Status
This parameter can be used only on uninitialized channels.

When to Use
It can be used when an application wants to connect to a channel, regardless of whether the
channel is being used (PCAN-View) with a different or unknown bit rate.

Application - Example of Use
Let’s say that your application works with remote LAN channels (PCAN-Gateway virtual
channels) and you don’t know the configured bit rate in one, some, or all of them. Since LAN
channel bit rates cannot be changed using the PCAN-Basic API, the initialization will fail if you
use a wrong bit rate. Having this parameter activated before calling initialize allows the
application to test the bit rate passed, and to ignore it if it doesn’t match. In this way the
initialization will always succeeds (it is assumed, a LAN channel is available):

Native (C++)

TPCANHandle channelUsed = PCAN_LANBUS1;
DWORD adaptToBitrate = PCAN_PARAMETER_ON;
DWORD bitrateSpeedNominal;

TPCANStatus result;

if (CAN_SetValue(channelUsed, PCAN_BITRATE_ADAPTING, &adaptToBitrate, sizeof(adaptToBitrate)) ==
PCAN_ERROR_OK)
{
result = CAN_Initialize(channelUsed, PCAN_BAUD_500K);
if (result == PCAN_ERROR_OK)
{
printf("LAN channel successfully initialized at 500 kBit/s");

else

{
if (result == PCAN_ERROR_CAUTION)

if (CAN_GetValue(channelUsed, PCAN_BUSSPEED_NOMINAL, &bitrateSpeedNominal,
sizeof(bitrateSpeedNominal)) == PCAN_ERROR_OK)
printf("LAN channel successfully connected. Bitrate adapted to %g kBit/s",
bitrateSpeedNominal / 1000.0);
else
printf("Error! Could not get the PCAN_BUSSPEED_NOMINAL value.");
}
else
printf("Error! Channel could not be initialized.");

Managed (C#)

ushort channelUsed = PCANBasic.PCAN_LANBUS1;

uint adaptToBitrate = PCANBasic.PCAN_PARAMETER_ON;
uint bitrateSpeedNominal;

TPCANStatus result;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_BITRATE_ADAPTING, ref adaptToBitrate, sizeof(uint))

_

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

= TPCANStatus.PCAN_ERROR_OK)

~ 1

result = PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) ;
if (result == TPCANStatus.PCAN_ERROR_OK)

{
¥

else

Console.WriteLine("LAN channel successfully initialized at 500 kBit/s");

if (result == TPCANStatus.PCAN_ERROR_CAUTION)

if (PCANBasic.GetValue(channelUsed, TPCANParameter.PCAN_BUSSPEED_NOMINAL, out
bitrateSpeedNominal, sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)
Console.WriteLine("LAN channel successfully connected. Bitrate adapted to {@} kBit/s",
bitrateSpeedNominal / 1000.0);
else
Console.WriteLine("Error! Could not get the PCAN_BUSSPEED_NOMINAL value.");
}
else
Console.WriteLine("Error! Channel could not be initialized.");
}
}

else
Console.WriteLine("Error! Channel not activate the feature PCAN_BITRATE_ADAPTING.");

PCAN_INTERFRAME_DELAY
This parameter helps the user to configure a pause/delay, with a microsecond resolution,
between CAN frames being sent within a PCAN-Channel. Other applications working with the
same PCAN-Hardware (for instance, a PCAN-View) are not influenced when configuring a
delay.

Note: This feature is only supported by FPGA based devices with a firmware version equal to
or greater than 2.4.0. At the moment of writing this documentation, only the FPGA based
PCAN-USB Devices (PCAN-USB FD, PCAN-USB Pro FD, PCAN-Chip USB) support an inter frame
delay.

Availability
It is available since version 4.2.0.

Supported By
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This value must be in the range of [0...1023]) microseconds. If the value to be set is bigger
than the resolution supported by the firmware, then the value is truncated.

Default Value
The default value of the inter frame delay is 0, which is mean that the delay is deactivated.
After configuring a value bigger than 0, the inter frame delay will be used until it is expressly
deactivated (set to 0), or the channel is disconnected (e.g., using the function
CAN_Uninitialize).

Initialization Status
This parameter can be used only on initialized channels.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

When to Use
It can be used on applications that want to increment the separation time of consecutive
transmitted CAN frames.

Application - Example of Use
Let’s say you have an application that use a FPGA based device like PCAN-USB Pro FD for
flashing some ECUs. Your ECUs are distributed and connected using gateways, so that small
transmission delays can occur. Since FPGA device can support up to 100% bus load it is
possible that your application sends data too fast and that the flashing protocol used can
experience problems if it relays on a client/server model like ISO-TP or UDS. You could
configure a small delay between packages, so that the maximum bus load will not be
reached, and so your processes work without failures (it is assumed, a USB channel is \J
connected):

Native (C++)
TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD delay = 10;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

if (CAN_SetValue(channelUsed, PCAN_INTERFRAME_DELAY, &delay, sizeof(delay)) == PCAN_ERROR_OK)

{
printf("Interframe delay set to %d on channel @x%X.", delay, channelUsed);
printf("Start working...");
// Do needed work
printf("Work finished!");
}
else
printf("Error! Interframe delay is not supported or could not be set");
}
else

printf("Error! Channel could not be initialized.");

Managed (C#)
ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint delay = 10;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_INTERFRAME_DELAY, ref delay, sizeof(uint)) ==
TPCANStatus.PCAN_ERROR_OK)

{
Console.WriteLine("Interframe delay set to {@} on channel ox{1:X}.", delay, channelUsed);
Console.WriteLine("Start working...");
// Do needed work
Console.WriteLine("Work finished!");
}
else
Console.WriteLine("Error! Interframe delay is not supported or could not be set");
}
else

Console.WriteLine("Error! Channel could not be initialized.");

PCAN_HARD_RESET_STATUS
This parameter allows changing the behavior of the function CAN_Reset. Normally, calling
this function causes the receive and send message queues for a PCAN-Channel to be
emptied. The hardware being represented by the channel is not reset. Activating this
parameter, allows the function to additionally perform a hardware reset after discarding the
messages from the channel’s queues.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Note: Performing a hardware reset causes the CAN transceiver to go bus off for a while. This
can disturb the CAN communication for a short time, generating error frames by other
nodes, and avoiding sending/receiving messages.

Availability
It is available since version 4.8.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter can be activated or deactivated.

Defined Value Description

PCAN_PARAMETER_OFF The hard reset feature is OFF.
PCAN_PARAMETER_ON The hard reset feature is ON.
Default Value

The default value of the hard reset (additional hardware reset) is deactivated
(PCAN_PARAMETER_OFF). After activating it, the hard reset will be performed by the
function CAN_Reset until it is expressly deactivated, or the channel is disconnected (e.g.,
using the function CAN_Uninitialize).

Initialization Status
This parameter can be used only on initialized channels.

When to Use
It can be used in applications that require a real hardware reset at some point, for example
to rule out an error state in the CAN transceiver.

Application - Example of Use
Let’s say you have an application that checks for an ECU to be “online” by sending a message
and waiting for a response. Only that ECU and your application are connected to the CAN
network. When sending a message while there are no other participants connected, message
errors are produced because CAN will indefinitely repeat the sending of that message until
success. You can use the hardware reset to just set your CAN hardware in “normal” mode
again, each time your “discover” message causes errors on the CAN bus:

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD hardReset = PCAN_PARAMETER_ON;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)
{

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

if (CAN_SetValue(channelUsed, PCAN_HARD_RESET_STATUS, &hardReset, sizeof(hardReset)) == PCAN_ERROR_OK)
{
printf("Hard reset was activated on channel ox%X.", channelUsed);
printf("Start working...");
// Do needed work
if (needReset)
if (CAN_Reset(channelUsed) == PCAN_ERROR_OK)
printf("Hardware reset performed...");
else
printf("Error while trying to perform a hardware reset!");
}
// Do needed work
printf("Work finished!");
}
else
printf("Error! The hard reset feature could not be set");
}
else
printf("Error! Channel could not be initialized.");

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint hardReset = PCANBasic.PCAN_PARAMETER_ON;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_HARD_RESET_STATUS, ref hardReset, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)

{
Console.WriteLine("Hard reset was activated on channel @x{1:X}.", channelUsed);
Console.WriteLine("Start working...");
// Do needed work
if (needReset)
if (PCANBasic.Reset(channelUsed) == TPCANStatus.PCAN_ERROR_OK)
Console.WriteLine ("Hardware reset performed...");
else
Console.WriteLine ("Error while trying to perform a hardware reset!");
}
// Do needed work
Console.WriteLine("Work finished!");
}
else
Console.WriteLine("Error! The hard reset feature could not be set ");
}
else

Console.WriteLine("Error! Channel could not be initialized.");

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Controlling the Data Flow

These parameters are intended to control the data being received through a PCAN-Channel, how it is
received, and even how/when an application should check for new incoming data. According with
the amount of information being transmitted within a CAN network it will reasonable to delimit the
data being accepted by an application in order to facilitate the work with it.

Receiving a lot of data while only having to process just a part of it can cause the unnecessary use of
memory and CPU processing, thus slowing the system down. In the same way, the reaction time for
reading incoming data is also the key for successful processing of incoming information.

PCAN_RECEIVE_EVENT
This parameter passes an event handle (Windows Event Objects) to the underlying API. This
event will be triggered (its state is set to “signaled”) when CAN data is placed into the receive
gueue of a PCAN-Channel.

Events are normally used when an application separates processing in different execution
threads. In a thread, that waiting for an event to occur doesn’t affect the normal execution of
an application.

Note that the event is not triggered each time a message is included into the queue, but only
when it states was “not signaled” and data is received. When an event is signaled, then you
must read the queue until emptiness and eventually reset the event (if you are using a
manual reset event).

Availability
It is available since version 1.0.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter can be enabled or disabled.

Status Value needed \

ENABLED Valid event object handle, returned by
the Windows function CreateEvent.

DISABLED 0, or NULL, or IntPtr.Zero (managed
environments).

@

http://msdn.microsoft.com/en-us/library/windows/desktop/ms682655(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms682396(VS.85).aspx

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Default Value
The default state is disabled (0). After enabling this parameter (by configuring an event
handle), the PCAN-Basic API will try to signal the handle until it is disabled (by setting as
handle a value of 0), or the channel is disconnected (e.g., using the function
CAN_Uninitialize).

Note that when you need to reinitialize a PCAN-Channel, you will need to set the event again
each time after initializing the channel, since the event will have again its default value of 0
after initialization. Note too that it is strongly recommended to close the handle (using
CloseHandle) after a PCAN-Channel has been uninitialized, since the API could try to set an
invalid handle and this can cause undesired behavior.

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used to avoid timeouts: when an application wants to react and process
information as fast as possible. It can be used to avoid unnecessary data polling: when an
application should check for specific messages that are seldom received and/or it is unknown
when they can arrive.

Application - Example of Use

Let’s say you have written a diagnostic application used for data updates on a device (e.g.,
Electronic Control Unit). The application must wait until the device is initialized and then
must send a message to set the device in maintenance mode. The device has to response
within the first 50 milliseconds after receiving the maintenance message, otherwise means it
cannot enter the desired mode. For this, you would start a thread that send the request and
wait for a response (it is assumed, a USB channel is connected, that a message with ID=0 and
first data byte = 7 causes a device to enter the diagnostic mode, and that a message with
ID=0 and first data byte = 0 causes a device to leave the diagnostic mode):

Native (C++)

HANDLE readEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
DWORD eventValue = (DWORD)readEvent;

TPCANHandle channelUsed = PCAN_USBBUS1;

TPCANMsg triggerMsg;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

{
if (readEvent != 0)

if (CAN_SetValue(channelUsed, PCAN_RECEIVE_EVENT, &eventValue, sizeof(eventValue)) == PCAN_ERROR_OK)
{

triggerMsg.ID = 0;

triggerMsg.MSGTYPE = PCAN_MESSAGE_STANDARD;

triggerMsg.LEN = 1;

triggerMsg.DATA[O] = 7;

if (CAN_Write(channelUsed, &triggerMsg) == PCAN_ERROR_OK)

if (WaitForSingleObject(readEvent, 50) == WAIT_OBJECT_0O)
{
printf("Device entered the diagnostig mode. Starting to work...\n");
printf("Work finished!\n");
triggerMsg.DATA[O] = O;
if (CAN_Write(channelUsed, &triggerMsg) == PCAN_ERROR_OK)

printf("Device back to normal state!\n");

http://msdn.microsoft.com/en-us/library/ms724211(v=vs.85).aspx

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

}
else
printf("Error! Trigger message for normal mode could not be sent.\n");
}
else
printf("Error - Timeout! Device could not be set in diagnostic mode.\n");
}
else
printf("Error! Trigger message for diagnostic mode could not be sent.\n");
}
else
printf("Error! Read-event could not be configured.\n");
}
else
printf("Error! Read-event could not be created.\n");
}
else

printf("Error! Channel @x%X could not be initialized.\n", channelUsed);

Managed (Ci#)

System.Threading.AutoResetEvent readEvent = new System.Threading.AutoResetEvent(false);
uint eventValue = (uint)readEvent.SafeWaitHandle.DangerousGetHandle().ToInt32();

ushort channelUsed = PCANBasic.PCAN_USBBUS1;

TPCANMsg triggerMsg = new TPCANMsg();

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_RECEIVE_EVENT, ref eventValue, sizeof(uint)) ==
TPCANStatus.PCAN_ERROR_OK)

{
triggerMsg.MSGTYPE = TPCANMessageType.PCAN_MESSAGE_STANDARD;
triggerMsg.DATA = new byte[8];
triggerMsg.ID = 0;
triggerMsg.LEN = 1;
triggerMsg.DATA[@] = 7;
if (PCANBasic.Write(channelUsed, ref triggerMsg) == TPCANStatus.PCAN_ERROR_OK)
{
if (readEvent.WaitOne(50))
{
Console.WriteLine("Device entered the diagnostig mode. Starting to work...");
Console.WriteLine("Work finished!");
triggerMsg.DATA[O] = O;
if (PCANBasic.Write(channelUsed, ref triggerMsg) == TPCANStatus.PCAN_ERROR_OK)
{
Console.WriteLine("Device back to normal state!");
}
else
Console.WriteLine("Error! Trigger message for normal mode could not be sent.");
}
else
Console.WriteLine("Error - Timeout! Device could not be set in diagnostic mode.");
}
else
Console.WriteLine("Error! Trigger message for diagnostic mode could not be sent.");
}
else
Console.WriteLine("Error! Read-event could not be configured.");
}
else

Console.WriteLine("Error! Channel 0x{0:X} could not be initialized.", channelUsed);

PCAN_MESSAGE_FILTER

This parameter instructs a PCAN-Channel to receive or not to receive messages by modifying
the acceptance mask and acceptance code of its CAN chip.

Note that an internal hardware reset is done when the acceptance mask and code must be

modified. If other application is using the same device, its communication could be affected
in some scenarios.

Availability
It is available since version 1.0.0.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
In a setting operation, this parameter can be opened or closed.

@

Defined Value Description \
PCAN_FILTER_OPEN The CAN filter allows all messages to pass.
PCAN_FILTER_CLOSE The CAN filter discards all messages.

In a getting operation, a third value can be received.

Defined Value Description

PCAN_FILTER_CUSTOM The CAN filter allows a custom range of
messages to pass.

Default Value
The default state of the filter is to receive all messages (PCAN_FILTER_OPEN). Note that a
PCAN-Channel starts receiving any message being transmitted with a CAN network
immediately after the channel is initialized. Note also that using the function
CAN_FilterMessages will cause the filter to be closed automatically before registering the
desired message range, if the filter state before calling the function was PCAN_FILTER_OPEN.

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used for switching the acceptance of messages temporarily, for example to avoid
receiving unwanted messages during a defined amount of time.

Application - Example of Use

Let’s say you have an application reading and interpreting a considerable amount of
information from a CAN network and showing it in some visual controls. Because the data
fluctuates too fast you would be required to check the general status of the data at some
time, but you don’t have the possibility to freeze the information being sent within the
network. You could close the CAN filter for a while, so that the last received information
stays on the visual controls, giving you enough time to check it (it is assumed, a USB channel
is connected):

Native (C++)
TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD filterState;

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)
{
// Doing work. At some point, when needed, close the filter...
filterState = PCAN_FILTER_CLOSE;
if (CAN_SetValue(channelUsed, PCAN_MESSAGE_FILTER, &filterState, sizeof(filterState)) == PCAN_ERROR_OK)

printf("Filter of channel 0x%X is now closed.\n", channelUsed);

// do needed work/checks

printf("Checks finished. Enabling communication again...\n");

filterState = PCAN_FILTER_OPEN;

if (CAN_SetValue(channelUsed, PCAN_MESSAGE_FILTER, &filterState, sizeof(filterState)) ==
PCAN_ERROR_OK)

printf("Filter of channel 0x%X is open again.\n", channelUsed);

else
printf("Filter of channel @x%X could not be restablished\n", channelUsed);
}
else
printf("Filter of channel 0x%X could not be closed\n", channelUsed);

@

}
else
printf("Channel @x%X could not be initialized\n", channelUsed);

Managed (C#)
ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint filterState;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)
{
// Doing work. At some point, when needed, close the filter...
filterState = PCANBasic.PCAN_FILTER_CLOSE;
if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_MESSAGE_FILTER, ref filterState, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)
{
Console.WriteLine("Filter of channel @x{@:X} is now closed.", channelUsed);
// do needed work/checks
Console.WriteLine("Checks finished. Enabling communication again...");
filterState = PCANBasic.PCAN_FILTER_OPEN;
if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_MESSAGE_FILTER, ref filterState,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("Filter of channel ©x{0:X} is open again.", channelUsed);

}
else
Console.WriteLine("Filter of channel ©x{@:X} could not be restablished", channelUsed);
}
else
Console.WriteLine("Filter of channel ©x{0:X} could not be closed", channelUsed);
}
else

Console.WriteLine("Channel 0x{@:X} could not be initialized", channelUsed);

PCAN_RECEIVE_STATUS

This parameter helps the user to allow / disallow the reception of messages (Data, Status,
and Error frames) within a PCAN-Channel, regardless of the value of its reception filter. The
acceptance filter of the PCAN-Channel remains unchanged (other applications working with
the same PCAN-Hardware will not be disturbed).

This parameter is a so called “pre-initialized” parameter, which means that it can be set
before a PCAN-Channel is initialized to activate/deactivate the parameter as fast as possible,
avoiding in this way problems that can appears within sensitive operations.

Availability
It is available since version 1.1.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS?2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter can be activated or deactivated.

Defined Value Description \

PCAN_PARAMETER_OFF The message receiving status is OFF.

PCAN_PARAMETER_ON The message receiving status is ON.
Default Value

The default value of the receive status is activated (PCAN_PARAMETER_ON). After
deactivating it, the receiving status stays inactive until it is expressly reactivated, or the
channel is disconnected (e.g., using the function CAN_Uninitialize).

Initialization Status
This parameter can be used in initialized or uninitialized channels.

When to Use
It can be used on applications that want to discard messages for a while, without having to
take modifications on the message filter, avoiding disturbances within the device being used.

Application - Example of Use
Suppose you have an application that uses a complicated filter, for example twelve different
message ranges. At some point, you need to stop receiving messages for a while and you
want to avoid reconfiguring the filter and resetting the CAN controller, which happens when
the filter needs to be reconfigured (it is assumed, a USB channel is connected):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD receptionState;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

// Doing work. At some point, when needed, the reception of messages is turned off...
receptionState = PCAN_PARAMETER_OFF;
if (CAN_SetValue(channelUsed, PCAN_RECEIVE_STATUS, &receptionState, sizeof(receptionState)) ==
PCAN_ERROR_OK)
{
printf("Message reception on channel 0x%X is now disabled.\n", channelUsed);
// do needed work...
printf("Operation finished. Enabling communication again...\n");
receptionState = PCAN_PARAMETER_ON;
if (CAN_SetValue(channelUsed, PCAN_RECEIVE_STATUS, &receptionState, sizeof(receptionState)) ==
PCAN_ERROR_OK)

printf("Normal opertaion on channel @x%X restablished.", channelUsed);

else
printf(“"Message reception of channel @x%X could not be restablished", channelUsed);
}
else
printf("Message reception of channel @x%X could not be changed", channelUsed);
}
else
printf("Channel 0x%X could not be initialized", channelUsed);

L

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Managed (C#)
ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint receptionState;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

// Doing work. At some point, when needed, the reception of messages is turned off...

receptionState = PCANBasic.PCAN_PARAMETER_OFF;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_RECEIVE_STATUS, ref receptionState,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("Message reception on channel @x{@:X} is now disabled.", channelUsed);

// do needed work...

Console.WriteLine("Operation finished. Enabling communication again...");

receptionState = PCANBasic.PCAN_PARAMETER_ON;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_RECEIVE_STATUS, ref receptionState,

sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)
{
Console.WriteLine("Normal opertaion on channel 0x{@:X} restablished.", channelUsed);
}
else
Console.WriteLine("Message reception of channel 0x{@:X} could not be restablished",
channelUsed);
}
else
Console.WriteLine("Message reception of channel 0x{@:X} could not be changed", channelUsed);
}
else

Console.WriteLine("Channel @x{@:X} could not be initialized", channelUsed);

PCAN_ALLOW_STATUS_FRAMES
This parameter helps the user to allow / disallow the reception of Status frames within a
PCAN-Channel. This parameter doesn’t affect the acceptance filter of the PCAN-Channel.
Furthermore, other applications working with the same PCAN-Hardware can individually
configure the reception of Status frames.

Note that disabling the PCAN_RECEIVE_STATUS parameter also suppresses the reception of
Status frames.

Availability
It is available since version 4.2.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter can be activated or deactivated.

Defined Value Description

PCAN_PARAMETER_OFF The reception of Status frames is OFF.
PCAN_PARAMETER_ON The reception of Status frames is ON.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Default Value
The default value of the Status frames reception is activated (PCAN_PARAMETER_ON). After
deactivating it, the Status frames reception stays inactive until it is expressly reactivated, or
the channel is disconnected (e.g., using the function CAN_Uninitialize).

Initialization Status
This parameter can be used only on initialized channels.

When to Use
It can be used on applications that want to allow/discard Status frames, since this is not
possible using the acceptance filter.

Application - Example of Use
Let’s say you have an application that needs to wake up a device by sending a message. It is
possible that sending the wake-up message generates some disturbance in the bus since the
device is in sleep mode. You can deactivate the reception of Status frames for a while, until
the device is awake and running (it is assumed, a USB channel is connected):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD statusFrames;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)
{
// Doing work. At some point, when needed, the reception of status frames is turned off...
statusFrames = PCAN_PARAMETER_OFF;
if (CAN_SetValue(channelUsed, PCAN_ALLOW_STATUS_FRAMES, &statusFrames, sizeof(statusFrames)) ==
PCAN_ERROR_OK)
{
printf("Reception of status frames on channel @x%X is now disabled.\n", channelUsed);
// do needed work...
printf("Operation finished. Enabling reception of status frames again...\n");
statusFrames = PCAN_PARAMETER_ON;
if (CAN_SetValue(channelUsed, PCAN_ALLOW_STATUS_FRAMES, &statusFrames, sizeof(statusFrames)) ==
PCAN_ERROR_OK)

printf("Reception of status frames on channel @x%X restablished.\n", channelUsed);

}
else
printf("Reception of status frames for channel 0x%X could not be restablished\n", channelUsed);
}
else
printf("Reception of status frames for channel @x%X could not be changed\n", channelUsed);
}
else

printf("Channel 0x%X could not be initialized\n", channelUsed);

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint statusFrames;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

// Doing work. At some point, when needed, the reception of status frames is turned off...
statusFrames = PCANBasic.PCAN_PARAMETER_OFF;
if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_ALLOW_STATUS_FRAMES, ref statusFrames,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)
{
Console.WriteLine("Reception of status frames on channel 0x{0:X} is now disabled.", channelUsed);
// do needed work...
Console.WriteLine("Operation finished. Enabling reception of status frames again...");
statusFrames = PCANBasic.PCAN_PARAMETER_ON;
if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_ALLOW_STATUS_FRAMES, ref statusFrames,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("Reception of status frames on channel @x{©@:X} restablished.", channelUsed);
}
else
Console.WriteLine("Reception of status frames for channel ©x{@:X} could not be restablished",
channelUsed);

¥

_

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

else
Console.WriteLine("Reception of status frames for channel 0x{0:X} could not be changed",
channelUsed);
}
else
Console.WriteLine("Channel @x{@:X} could not be initialized", channelUsed);

PCAN_ALLOW_RTR_FRAMES

This parameter helps the user to allow / disallow the reception of RTR frames within a PCAN-
Channel. This parameter doesn’t affect the acceptance filter of the PCAN-Channel.
Furthermore, other applications working with the same PCAN-Hardware can individually
configure the reception of RTR frames.

Note that disabling the PCAN_RECEIVE_STATUS parameter also suppresses the reception of
RTR frames.

Availability

It is available since version 4.2.0.

Supported By

PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).

PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode

This parameter is read/write. It can be set and read.

Possible Values

This parameter can be activated or deactivated.

Defined Value Description

PCAN_PARAMETER_OFF The reception of RTR frames is OFF.
PCAN_PARAMETER_ON The reception of RTR frames is ON.

Default Value

The default value of the RTR frames reception is activated (PCAN_PARAMETER_ON). After
deactivating it, the RTR frames reception stays inactive until it is expressly reactivated, or the
channel is disconnected (e.g., using the function CAN_Uninitialize).

Initialization Status

This parameter can be used only on initialized channels.

When to Use

It can be used on applications that want to allow/discard RTR frames for a while, without
having to take modifications on the message filter, avoiding disturbances within the device
being used.

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Application - Example of Use
Let’s say you have an application that responses to RTR frames with information that can
vary, e.g., it can be set by the user. You can deactivate the reception of RTR messages (and
their processing) while a user is updating this information, without having to stop or disable
the code handling RTRs (it is assumed, a USB channel is connected):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD rtrFrames;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)
{
// Doing work. At some point, when needed, the reception of RTR frames is turned off...
rtrFrames = PCAN_PARAMETER_OFF;
if (CAN_SetValue(channelUsed, PCAN_ALLOW_RTR_FRAMES, &rtrFrames, sizeof(rtrFrames)) == PCAN_ERROR_OK)

printf("Reception of RTR frames on channel @x%X is now disabled.\n", channelUsed);

// do needed work...

printf("Operation finished. Enabling reception of RTR frames again...\n");

rtrFrames = PCAN_PARAMETER_ON;

if (CAN_SetValue(channelUsed, PCAN_ALLOW_RTR_FRAMES, &rtrFrames, sizeof(rtrFrames)) ==
PCAN_ERROR_OK)

{
printf("Reception of RTR frames on channel 0x%X restablished.\n", channelUsed);
else
printf("Reception of RTR frames for channel 0x%X could not be restablished\n", channelUsed);
}
else
printf("Reception of RTR frames for channel @x%X could not be changed\n", channelUsed);
}
else

printf("Channel 0x%X could not be initialized\n", channelUsed);

Managed (C#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint rtrFrames;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)
{
// Doing work. At some point, when needed, the reception of RTR frames is turned off...
rtrFrames = PCANBasic.PCAN_PARAMETER_OFF;
if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_ALLOW_RTR_FRAMES, ref rtrFrames, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)
{
Console.WriteLine("Reception of RTR frames on channel 0x{@:X} is now disabled.", channelUsed);
// do needed work...
Console.WriteLine("Operation finished. Enabling reception of RTR frames again...");
rtrFrames = PCANBasic.PCAN_PARAMETER_ON;
if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_ALLOW_RTR_FRAMES, ref rtrFrames,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("Reception of RTR frames on channel 0x{@:X} restablished.", channelUsed);
}
else
Console.WriteLine("Reception of RTR frames for channel @x{0:X} could not be restablished",
channelUsed);
}
else
Console.WriteLine("Reception of RTR frames for channel @x{0:X} could not be changed", channelUsed);

¥

else
Console.WriteLine("Channel 0x{@:X} could not be initialized", channelUsed);

PCAN_ALLOW_ERROR_FRAMES
This parameter helps the user to allow / disallow the reception of CAN Error frames within a
PCAN-Channel. This parameter doesn’t affect the acceptance filter of the PCAN-Channel.
Furthermore, other applications working with the same PCAN-Hardware can individually
configure the reception of Error frames.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Note that disabling the PCAN_RECEIVE_STATUS parameter also suppresses the reception of
Error frames.

Availability
It is available since version 4.2.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter can be activated or deactivated.

Defined Value Description

PCAN_PARAMETER_OFF The reception of CAN Error frames is OFF.
PCAN_PARAMETER_ON The reception of CAN Error frames is ON.
Default Value

The default value of the CAN Error frames reception is deactivated
(PCAN_PARAMETER_OFF). After activating it, the CAN Error frames reception stays active
until it is expressly deactivated, or the channel is disconnected (e.g., using the function
CAN_Uninitialize).

Initialization Status
This parameter can be used only on initialized channels.

When to Use
It can be used in applications that want to allow/discard CAN Error frames, since this is not
possible using the acceptance filter.

Application - Example of Use
Let’s say you have an application that is not showing the expected behavior regarding CAN
communication. You could activate the Error frames to see if the CAN bus is disturbed and to
get more information about possible causes for it (it is assumed, a USB channel is
connected):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD errorFrames;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

// Doing work. At some point, when needed, the reception of Error frames is turned on...

errorFrames = PCAN_PARAMETER_ON;

if (CAN_SetValue(channelUsed, PCAN_ALLOW_ERROR_FRAMES, &errorFrames, sizeof(errorFrames)) ==
PCAN_ERROR_OK)

{

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

printf("Reception of Error frames on channel 0x%X is now enabled.\n", channelUsed);

// do needed work...

printf("Operation finished. Disabling reception of Error frames again...\n");

errorFrames = PCAN_PARAMETER_OFF;

if (CAN_SetValue(channelUsed, PCAN_ALLOW_ERROR_FRAMES, &errorFrames, sizeof(errorFrames)) ==
PCAN_ERROR_OK)

printf("Reception of Error frames on channel 0x%X disabled.\n", channelUsed);

}
else
printf("Reception of Error frames for channel @x%X could not be disabled\n", channelUsed);
}
else
printf("Reception of Error frames for channel @x%X could not be changed\n", channelUsed);
}
else

printf("Channel @x%X could not be initialized\n", channelUsed);

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint errorFrames;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

// Doing work. At some point, when needed, the reception of Error frames is turned on...

errorFrames = PCANBasic.PCAN_PARAMETER_ON;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_ALLOW_ERROR_FRAMES, ref errorFrames,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("Reception of Error frames on channel @x{@:X} is now enabled.", channelUsed);

// do needed work. ..

Console.WriteLine("Operation finished. Disabling reception of Error frames again...");

errorFrames = PCANBasic.PCAN_PARAMETER_OFF;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_ALLOW_ERROR_FRAMES, ref errorFrames,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

{
Console.WriteLine("Reception of Error frames on channel @x{@:X} disabled.", channelUsed);
}
else
Console.WriteLine("Reception of Error frames for channel @x{0:X} could not be disabled",
channelUsed);
}
else
Console.WriteLine("Reception of Error frames for channel ©x{0:X} could not be changed",
channelUsed);
}
else

Console.WriteLine("Channel 0x{0:X} could not be initialized", channelUsed);

@

PCAN_ALLOW_ECHO_FRAMES
This parameter helps the user to allow / disallow the reception of echo messages within a
PCAN-Channel, this is, the reception of frames sent by itself. This parameter doesn’t affect
the acceptance filter of the PCAN-Channel. Furthermore, other applications working with the
same PCAN-Hardware can individually configure the reception of echo frames.

Note that disabling the PCAN_RECEIVE_STATUS parameter also suppresses the reception of
echo frames.

Availability
It is available since version 4.6.0.

Supported By
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Notes:

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Requires a device driver version equal to or greater than 4.3.0.

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter can be activated or deactivated.

Defined Value Description

PCAN_PARAMETER_OFF The reception of Echo frames is OFF.
PCAN_PARAMETER_ON The reception of Echo frames is ON.

Default Value \)

The default value of the Echo frames reception is deactivated (PCAN_PARAMETER_OFF).
After activating it, the Echo frames reception stays active until it is expressly deactivated, or
the channel is disconnected (e.g., using the function CAN_Uninitialize).

Initialization Status
This parameter can be used only on initialized channels.

When to Use
It can be used in applications that want to allow/discard Echo CAN frames, since this is not

possible using the acceptance filter.

Application - Example of Use
Let’s say you have an application that need to assure, that some messages are physically sent
before sending additional data or proceeding to do other tasks. You could activate the Echo
frames to assert that all needed messages were placed in the CAN network:

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

DWORD echoFrames = PCAN_PARAMETER_ON;
if (CAN_SetValue(channelUsed, PCAN_ALLOW_ECHO_FRAMES, &echoFrames, sizeof(echoFrames)) == PCAN_ERROR_OK)
{
printf("Reception of Echo frames on channel 0x%X is now enabled.\n", channelUsed);
// Required data is sent
TPCANMsg toSend;
toSend.ID = 1;
toSend.LEN = 1;
toSend.DATA[@]
toSend.MSGTYPE

1;
PCAN_MESSAGE_STANDARD;

if (CAN_Write(channelUsed, &toSend) == PCAN_ERROR_OK)
{
// Gives time for the message to be sent
Sleep(10);
// Check for Echo frame
TPCANMsg received;
bool echoReceived = false;
while (CAN_Read(channelUsed, &received, NULL) != PCAN_ERROR_QRCVEMPTY)
if (received.MSGTYPE & PCAN_MESSAGE_ECHO)

echoReceived = true;
break;

}

if(echoReceived)

printf("Echo frame received on channel @x%X.\n", channelUsed);
else

printf("Error! Echo frame never received.\n");

else

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

printf("Error while trying to send a CAN message on channel ©x%X\n", channelUsed);
}
else
printf("Reception of Echo frames for channel 0x%X could not be changed\n", channelUsed);
}
else
printf("Channel 0x%X could not be initialized\n", channelUsed);

Managed (C#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)
{
uint echoFrames = PCANBasic.PCAN_PARAMETER_ON;
if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_ALLOW_ECHO_FRAMES, ref echoFrames, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)
{
Console.WriteLine("Reception of Echo frames on channel 0x{@:X} is now enabled.", channelUsed);
// Required data is sent
TPCANMsg toSend = new TPCANMsg();
toSend.DATA = new byte[8];
toSend.ID = 1;
toSend.LEN = 1;
toSend.DATA[@] = 1;
toSend.MSGTYPE = TPCANMessageType.PCAN_MESSAGE_STANDARD;

if(PCANBasic.Write(channelUsed, ref toSend) == TPCANStatus.PCAN_ERROR_OK)
{
// Gives time for the message to be sent
System.Threading.Thread.Sleep(10);
// Check for Echo frame
TPCANMsg received;
bool echoReceived = false;
while(PCANBasic.Read(channelUsed, out received) == TPCANStatus.PCAN_ERROR_OK)
if((received.MSGTYPE & TPCANMessageType.PCAN_MESSAGE_ECHO) ==
TPCANMessageType.PCAN_MESSAGE_ECHO)

{
echoReceived = true;
break;
}
if(echoReceived)
Console.WriteLine("Echo frame received on channel @x{@:X}.", channelUsed);
else
Console.WriteLine("Error! Echo frame never received.");
}
else
Console.WriteLine("Error while trying to send a CAN message on channel 0x{@:X}", channelUsed);
}
else
Console.WriteLine("Reception of Echo frames for channel 0x{@:X} could not be changed", channelUsed);
}
else

Console.WriteLine("Channel 0x{0:X} could not be initialized", channelUsed);

PCAN_ACCEPTANCE_FILTER_11BIT
This parameter helps the user to configure the reception filter of a PCAN channel with a
specific 11-bit acceptance code and mask, as specified for the acceptance filter of the
SJA1000 CAN controller.

This parameter allows the configuration of complex filter patterns, and it is intended for
users with extended CAN knowledge. Note that the calculation of mask and code patterns is
not a trivial matter. For most applications the use of the function CAN_FilterMessages for
setting message reception ranges is more adequate. A simple example on code and mask
calculation can be seen in the Appendix D.

Notes:
e The acceptance code and mask are coded together in a 64-bit value, each of them using 4
bytes. The acceptance code is stored at the most significant bytes. Bitwise and shifting

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

operations are needed to code and decode the values into and from a 64-bit unsigned
integer variable.
e To set an acceptance code and mask denoting 29-bit CAN IDs, the parameter
PCAN_ACCEPTANCE_FILTER_29BIT must be used instead.
e The SIA1000 CAN controller has only one acceptance filter for both, standard (11-bit) and
extended (64-bit) IDs. When doing settings for 11-bit IDs, the acceptance mask and code are
internally shifted to the left as adaptation measure, which also causes possible reception of
unwanted messages. For this reason, is also not advisable to mix 11-bits and 29-bits filters.
e An internal hardware reset is done each time the acceptance filter is modified. If other
application is using the same device, its communication could be affected in some scenarios. Q

Availability
It is available since version 4.2.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter has a quad-word resolution. Since it contains two double-word values
representing the acceptance code and mask, the maximum value range accepted for this
parameter is given by the limits of their internal values, which is a range between [0...16838].
This means, the maximum value of this parameter as 64-bit value is 70364449226751, that is,
hexadecimal 00003FFFO0003FFFh.

Default Value
The default state of the reception filter is to receive all messages (PCAN_FILTER_OPEN). This
represents a default acceptance code of Oh and an acceptance mask of 7FFh
(00000000000007FFh). Note that an automatic filter reset is done before registering the
desired code and mask, if the filter state before using this parameter was
PCAN_FILTER_OPEN.

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used when it is necessary to allow or block the reception of specific CAN messages
whose identifiers follow a concrete pattern, and when those patterns are difficult to
represent as a simple range of messages.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Application - Example of Use

Let’s say you want to write an application that read data from an ECU for diagnostic
purposes. The ECU sends a lot of information periodically and you are interested only in 3
messages, 100h, 400h, and 500h. Using the function CAN_FilterMessage would imply to do
three calls, one for each ID, which in turn cause 3 hardware resets. With only one call to
CAN_SetValue using the parameter PCAN_ACCEPTANCE_FILTER_11BIT and the value
0000000000000500h you cause the same effect, the acceptance filter will only let the
reception of those 3 IDs, but you save two function calls and two unnecessary hardware
resets (it is assumed, a USB channel is connected):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
uint64_t acceptanceFilterll = 0x500;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

if (CAN_SetValue(channelUsed, PCAN_ACCEPTANCE_FILTER_11BIT, &acceptanceFilteril,
sizeof(acceptanceFilter1l)) == PCAN_ERROR_OK)

printf("The filter was configured to accept the standard IDs 0x100, 0x400, and ©x500\n");

else
printf("Error! The 11-bit acceptance filter could not be set\n");
}
else
printf("Channel 0x%X could not be initialized\n", channelUsed);

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
ulong acceptanceFilterll = 0x500;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

if(PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_ACCEPTANCE_FILTER_11BIT, ref acceptanceFilterll,
sizeof(ulong)) == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("The filter was configured to accept the standard IDs ©x100, 0x400, and ©x500");
}
else
Console.WriteLine("Error! The 11-bit acceptance filter could not be set");
}
else
Console.WriteLine("Channel 0x{@:X} could not be initialized", channelUsed);

PCAN_ACCEPTANCE_FILTER_29BIT
This parameter helps the user to configure the reception filter of a PCAN channel with a
specific 29-bit acceptance code and mask, as specified for the acceptance filter of the
SJA1000 CAN controller.

This parameter allows the configuration of complex filter patterns, and it is intended for
users with extended CAN knowledge. Note that the calculation of mask and code patterns is
not a trivial matter. For most applications the use of the function CAN_FilterMessages for
setting message reception ranges is more adequate. A simple example on code and mask
calculation can be seen in the Appendix D.

Notes:

e The acceptance code and mask are coded together in a 64-bit value, each of them using 4
bytes. The acceptance code is stored at the most significant bytes. Bitwise and shifting
operations are needed to code and decode the values into and from a 64-bit unsigned
integer variable.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

To set an acceptance code and mask denoting 11-bit CAN IDs, the parameter
PCAN_ACCEPTANCE_FILTER_11BIT must be used instead.

The SJA1000 CAN controller has only one acceptance filter for both, standard (11-bit) and
extended (64-bit) IDs. When doing settings for 11-bit IDs, the acceptance mask and code are
internally shifted to the left as adaptation measure, which also causes possible reception of
unwanted messages. For this reason, is also not advisable to mix 11-bits and 29-bits filters.
An internal hardware reset is done each time the acceptance filter is modified. If other
application is using the same device, its communication could be affected in some scenarios.

Availability

It is available since version 4.2.0.

Supported By

PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).

PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode

This parameter is read/write. It can be set and read.

Possible Values

This parameter has a quad-word resolution. Since it contains two double-word values
representing the acceptance code and mask, the maximum value range accepted for this
parameter is given by the limits of their internal values, which is a range between [O...
4294967295). This means, the maximum value of this parameter as 64-bit value is
18446744073709551615, that is, hexadecimal FFFFFFFFFFFFFFFFh.

Default Value

The default state of the reception filter is to receive all messages (PCAN_FILTER_OPEN). This
represents a default acceptance code of Oh and an acceptance mask of 1FFFFFFFh
(00O0000001FFFFFFFh). Note that an automatic filter reset is done before registering the
desired code and mask, if the filter state before using this parameter was
PCAN_FILTER_OPEN.

Initialization Status

The PCAN-Channel must be initialized before using this parameter.

When to Use

It can be used when it is necessary to allow or block the reception of particular CAN
messages whose identifiers follow a concrete pattern, and when those patterns are difficult
to represent as a simple range of messages.

Application - Example of Use

Let’s say you want to write an application that read data from an ECU for diagnostic
purposes. The ECU sends a lot of information periodically and you are interested only in 3
messages, 1100h, 1400h, and 1500h. Using the function CAN_FilterMessage would imply to

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

do three calls, one for each ID, which in turn cause 3 hardware resets. With only one call to
CAN_SetValue using the parameter PCAN_ACCEPTANCE_FILTER_29BIT and the value
0000100000000500h you achieve the same effect; the acceptance filter will only let the
reception of those 3 IDs, but you save two function calls and two unnecessary hardware
resets (it is assumed, a USB channel is connected):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
uint64_t acceptanceFilter29 = 0x0000100000000500;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

if (CAN_SetValue(channelUsed, PCAN_ACCEPTANCE_FILTER_29BIT, &acceptanceFilter29,
sizeof(acceptanceFilter29)) == PCAN_ERROR_OK)

printf("The filter was configured to accept the extended IDs 0x1100, ©x1400, and ©x1500\n");

else
printf("Error! The 29-bit acceptance filter could not be set\n");
}
else
printf("Channel 0x%X could not be initialized\n", channelUsed);

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
ulong acceptanceFilter29 = 0x0000100000000500;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_ACCEPTANCE_FILTER_29BIT, ref acceptanceFilter29,
sizeof(ulong)) == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("The filter was configured to accept the extended IDs ©x1100, ©x1400, and
0x1500") ;

else
Console.WriteLine("Error! The 29-bit acceptance filter could not be set");
}
else
Console.WriteLine("Channel 0x{@:X} could not be initialized", channelUsed);

L

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Using Logging Parameters

These parameters are intended to support the developing phase of a PCAN-Basic project by
helping with debug operations. Using the logging system can help finding logic problems
within the use of the API, detecting problems with the data being sent or received, checking
parameter data, commands order, etc.

It is also possible to activate / deactivate and configure the logging functionality without
having to change the code of an application, which allows later debugging session after an
application is already released. More information about this can be found in the online
forum, Activate debug-logging over Windows Registry, or in Appendix A.

The logging functionality is not tied to a PCAN-Channel but to the use of the PCAN-Basic
library itself. This implies three important points:

o The PCAN-Channel handle to use in any CAN_GetValue / CAN_SetValue must be
PCAN_NONEBUS, if any PCAN_LOG_* parameter is used. Any other value will cause
the function to fail.

o The data logged corresponds to the API calls issued by the process that has loaded
the PCAN-Basic dll.

o You cannot start a debug session for different threads of the same application.

PCAN_LOG_LOCATION
This value is used to set the folder on a computer in where the Log-File will be stored, within
a debug session.

Note that setting this value starts recording debug information automatically. You could
include calls to this parameter in any part of your code that normally shouldn’t has to be
executed, so you will be notified through the log file if this point was reached (as a kind of
assert).

If a debug session is running (a log file is being written), PCAN_LOG_LOCATION instructs the
APl to close the current log file and to start the process again with the new folder
information. Note too that the name of the log file cannot be specified. The name of the log
file is always PCANBasic.log.

Availability
It is available since version 1.0.0.

Supported By
PCAN_NONEBUS: Logging parameters are used globally, i.e., they are not tied to a specific
PCAN-Channel, but to a specific process.

Access Mode
This parameter is read/write. It can be set and read.

http://www.peak-system.com/forum/viewtopic.php?f=41&t=318

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Possible Values
This value is a string containing a fully qualified and valid path to an existing directory on the
executing computer. To use the default path (calling process path) an empty string must be

set.

Kind of Path Value needed

CUSTOM Path A valid directory string (Files and Paths).

DEFAULT Path Empty string (calling process folder).
Default Value

The default value is the path to the calling process folder.

Initialization Status
Does not apply. It is not necessary to have any PCAN-Channel initialized to use this

parameter.

When to Use
It can be used when you want to differentiate on debug or logging session by assigning
different paths and creating several PCANBasic.log files.

Application - Example of Use
Let’s say you have started several instances of the same program and you want to debug all
of them at the same time. Additionally, you want to separate the log files per application.
You could create a folder for each and configure the path on each application, so that each of
them can create its own log file:

Native (C++)

int processId = GetProcessId(GetCurrentProcess());
char buffer[MAX_PATH], fullPath[MAX_PATH];

GetTempPathA(MAX_PATH, buffer);
sprintf_s(fullPath, MAX_PATH, "%sPCAN-Basic_%d", buffer, processId);

if (CreateDirectoryA(fullPath, NULL))

{
if (CAN_SetValue(PCAN_NONEBUS, PCAN_LOG_LOCATION, fullPath, MAX_PATH) == PCAN_ERROR_OK)
printf("Logging is active. The log file is located at:\n%s", fullPath);
}
else
printf("Error! Log location could not be configured.\n");
}
else

printf("Folder for log file could not be created at:\n%s", fullPath);

Managed (C#)

int processId = GetProcessId(GetCurrentProcess());
char logsFolder[MAX_PATH];
char fullPath[MAX_PATH];

GetTempPathA(MAX_PATH, logsFolder);
sprintf_s(fullPath, MAX_PATH, "%sPCAN-Basic_%d", logsFolder, processId);

if (CreateDirectoryA(fullPath, NULL))

{
if (CAN_SetValue(PCAN_NONEBUS, PCAN_LOG_LOCATION, fullPath, MAX_PATH) == PCAN_ERROR_OK)
printf("Logging is active. The log file is located at:\n%s", fullPath);
}
else
printf("Error! Log location could not be configured.\n");
}
else

printf("Folder for log file could not be created at:\n%s", fullPath);

L

http://msdn.microsoft.com/en-us/library/aa365247(VS.85).aspx

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

PCAN_LOG_STATUS

This parameter helps the user to control the activity status of a debug session within the
PCAN-Basic API.

Note that if the logging status is set to ON without having configured a destination path for
the log file or without having configured the information to be logged, then the session
process will start with the default values, which equates to the log file being placed in the
folder where the calling process is located and only exceptions will be logged.

Availability
It is available since version 1.0.0.

Supported By
PCAN_NONEBUS: Logging parameters are used globally, i.e., they are not tied to a specific
PCAN-Channel, but to a specific process.

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter can be activated or deactivated.

Defined Value Description ‘
PCAN_PARAMETER_OFF The Logging is OFF.
PCAN_PARAMETER_ON The Logging is ON.

Default Value

The default value of the Logging mode is deactivated (PCAN_PARAMETER_OFF). After
activating it, the logging functionality stays active until it is expressly deactivated.

Initialization Status
Does not apply. It is not necessary to have any PCAN-Channel initialized to use this

parameter.

When to Use
It can be used to interrupt debug sessions (start, stop, restart, etc.).

Application - Example of Use
Let’s say you want to debug your application. You already noted that you have an
intermittent problem. To get only logged data that potentially contains information about
the issue being investigated, you could activate the debug session only in those moments in
which the anomaly takes place:

Native (C++)

DWORD logState = PCAN_PARAMETER_ON;

//... when needed, the logging functionality is activated
if (CAN_SetValue(PCAN_NONEBUS, PCAN_LOG_STATUS, &logState, sizeof(logState)) == PCAN_ERROR_OK)
{
printf("Logging is enabled.\n");
//... Log as needed
logState = PCAN_PARAMETER_OFF;
if (CAN_SetValue(PCAN_NONEBUS, PCAN_LOG_STATUS, &logState, sizeof(logState)) == PCAN_ERROR_OK)

{

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

printf("Logging is disabled.\n");

else
printf("Error! Logging could not be disabled.\n");
}
else
printf("Error! Logging could not be enabled.\n");

Managed (C#)

uint logState = PCANBasic.PCAN_PARAMETER_ON;

//... when needed, the logging functionality is activated
if (PCANBasic.SetValue(PCANBasic.PCAN_NONEBUS, TPCANParameter.PCAN_LOG_STATUS, ref logState, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)
{

Console.WritelLine("Logging is enabled.");

//... Log as needed

logState = PCANBasic.PCAN_PARAMETER_OFF;

if (PCANBasic.SetValue(PCANBasic.PCAN_NONEBUS, TPCANParameter.PCAN_LOG_STATUS, ref logState,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

Console.WritelLine("Logging is disabled.");
}
else
Console.WriteLine("Error! Logging could not be disabled.");
}
else
Console.WriteLine("Error! Logging could not be enabled.");

PCAN_LOG_CONFIGURE
This value is used to configure the debug information to be included in the log file generated
in a debug session within the PCAN-Basic API.

Availability
It is available since version 1.0.0.

Supported By
PCAN_NONEBUS: Logging parameters are used globally, i.e. they are not tied to a specific
PCAN-Channel.

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter can be configured with one of the following values or a combination of those:

Defined Value Description \
LOG_FUNCTION_DEFAULT This value is always active.
LOG_FUNCTION_ENTRY Logs when a function is entered.
LOG_FUNCTION_PARAMETERS Logs the parameters passed to a function.
LOG_FUNCTION_LEAVE Logs when a function is leaved and its return
value.
LOG_FUNCTION_WRITE Logs the parameters and CAN data passed to
the CAN_Write function.
LOG_FUNCTION_READ Logs the parameters and CAN data received
through the CAN_Read function.

Default Value
The default value of this parameter is to log only internal exceptions
(LOG_FUNCTION_DEFAULT). Note that having only this default value can cause to log no data

L

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

at all, since the appearance of exceptions are very rare (we do our best to maintain this API
bugs free ©).

Initialization Status
Does not apply. It is not necessary to have any PCAN-Channel initialized to use this

parameter.

When to Use
It can be used when only specific debug information is desired.

Application - Example of Use
Let’s say you have an application that has a problem with the sequence in which some API
functions are called, and you want to know which function is being called too early or too

L

late. You could configure the debug session to only log the calling of the functions, so that
you can see the order in which those functions are processed:

Native (C++)

DWORD configuration = LOG_FUNCTION_ENTRY;
DWORD logState = PCAN_PARAMETER_ON;
if (CAN_SetValue(PCAN_NONEBUS, PCAN_LOG_CONFIGURE, &configuration, sizeof(configuration)) == PCAN_ERROR_OK)
if (CAN_SetValue(PCAN_NONEBUS, PCAN_LOG_STATUS, &logState, sizeof(logState)) == PCAN_ERROR_OK)
{
printf("Debug operation started.\n");
//... Log as needed
logState = PCAN_PARAMETER_OFF;
if (CAN_SetValue(PCAN_NONEBUS, PCAN_LOG_STATUS, &logState, sizeof(logState)) == PCAN_ERROR_OK)
printf("Debug operation finished. Please check the log file.\n");
}
else
printf("Error! Logging could not be disabled.\n");
}
else
printf("Error! Logging could not be enabled.\n");
}
else
printf("Error! Logging could not be configured.\n");

Managed (C#)
uint configuration = PCANBasic.LOG_FUNCTION_ENTRY;
uint logState = PCANBasic.PCAN_PARAMETER_ON;

if (PCANBasic.SetValue(PCANBasic.PCAN_NONEBUS, TPCANParameter.PCAN_LOG_CONFIGURE, ref configuration,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

if (PCANBasic.SetValue(PCANBasic.PCAN_NONEBUS, TPCANParameter.PCAN_LOG_STATUS, ref logState,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)
{
Console.WriteLine("Debug operation started.");
//... Log as needed
logState = PCANBasic.PCAN_PARAMETER_OFF;
if (PCANBasic.SetValue(PCANBasic.PCAN_NONEBUS, TPCANParameter.PCAN_LOG_STATUS, ref logState,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

{
Console.WriteLine("Debug operation finished. Please check the log file.");
}
else
Console.WriteLine("Error! Logging could not be disabled.");
}
else
Console.WriteLine("Error! Logging could not be enabled.");
}
else

Console.WriteLine("Error! Logging could not be configured.");

PCAN_LOG_TEXT
This parameter helps the user to insert custom text into the log file generated in a debug

session.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Note that using this parameter starts recording debug information automatically if the
logging functionality was inactive. You could include calls to this parameter in parts of your
code that normally shouldn’t have to be executed, so that any unwanted behavior triggers
the start of a debug session (as a kind of watch dog).

Availability
It is available since version 1.0.0.

Supported By
PCAN_NONEBUS: Logging parameters are used globally, i.e., they are not tied to a specific
PCAN-Channel.

Access Mode
This parameter can only be written.

Possible Values
This parameter must be a string containing the data to be inserted in the log file. There is no
limit for the length of the string, but it is recommended to use a length not bigger than
MAX_PATH (255 bytes).

Default Value
Does not apply. This is a value that can only be written.

Initialization Status
Does not apply. It is not necessary to have any PCAN-Channel initialized to use this
parameter.

When to Use
It can be used if you want to use the log functionality for your own purposes, i.e., to debug
own processes, behavior, to mark executed code places, etc.

Application - Example of Use
Let’s say you are writing an application and want to include debug information of other
processes being done inside of it, e.g., to log when any access violation occurs, or when the
user makes any configuration changes, etc. Instead of implementing your own debug logging,
you could use this parameter and so save implementation time, since this logging file works,
has been tested already, and it includes already information such as when an entry was done
and from which thread it was done (an exception is simulated):

Native (C++)

try
{
// Do some operations and check for exceptions
throw std::exception("An exception occurred doing certain operations");

catch (std::exception &ex)
{
// Exception occurred. Log personal message
char buffer[MAX_PATH];
sprintf_s(buffer, MAX_PATH, "MyAPP-Exception: %s", ex.what());
if (CAN_SetValue(PCAN_NONEBUS, PCAN_LOG_TEXT, buffer, MAX_PATH) == PCAN_ERROR_OK)
printf("Exception logged sucessfully\n");
else
printf("Error! It was not possible to log own message\n");

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Managed (C#)

try

// Do some operations and check for exceptions
throw new Exception("An exception occurred doing certain operations");

catch(Exception ex)

// Exception occurred. Log personal message
string message = "MyAPP-Exception: " + ex.Message;
if (PCANBasic.SetValue(PCANBasic.PCAN_NONEBUS, TPCANParameter.PCAN_LOG_TEXT, message,
(uint)message.Length) == TPCANStatus.PCAN_ERROR_OK)
Console.WriteLine("Exception logged sucessfully");
else
Console.WriteLine("Error! It was not possible to log own message");

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Using Tracing Parameters

These parameters are intended to minimize the developing time and cost of CAN
applications using the PCAN-Basic API, by allowing the recording and storing of all CAN
communication in an ASCII formatted file that can be loaded by any text editor. Thanks to the
structured stored data, it can be easily parsed into own applications too (see Appendix B, and
Appendix C).

Since the trace formats are officially used by several Peak-System applications, there are
already several tools that can load and process those trace files, further minimizing the
investment in own software programming. For example, the information recorded can be
inspected using PCAN-Explorer and can even be played back for simulation purposes using
the PCAN-Trace application.

Consider that the trace functionality is available for each PCAN-Channel. This implies three
important points:

o The PCAN-Channel must be first initialized before a trace session can be started.

o You can start as many trace sessions as used/initialized PCAN-Channels within your
application, simultaneously.

o The data traced corresponds to the data successfully transmitted through a PCAN-
Channel, using the functions CAN_ReadFD and CAN_WriteFD in case of a channel
initialized as FD, or using the functions CAN_Read and CAN_Write in case a channel
was initialized in normal mode. Note that if an application never calls those
functions, then no data will be traced.

PCAN_TRACE_LOCATION
This value is used to set the folder on a computer in where the PCAN-Trace file will be stored.
If a session is running (a PCAN-Trace file is being written), PCAN_TRACE_LOCATION instructs
the API to close the current PCAN-Trace file and to start the process again with the new
folder information.

Note that the name of the trace file cannot be freely specified. The base name of the trace
file is always the name of the PCAN-Channel being used (PCAN_USBBUSL1.trc, for example). It
is only possible to enhance the name with the date and/or time of creation of the file.

Availability
It is available since version 1.3.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).

PEAK-System Documentation

PCAN - Parameters | ver. 3.0
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This value is a string containing a fully qualified and valid path to an existing directory on the
executing computer. To use the default path (calling process path) an empty string must be

set.
Kind of Path Value needed
CUSTOM Path A valid directory string (Files and Paths). \J
DEFAULT Path Empty string (calling process folder).
Default Value

The default value is the path to the calling process folder.

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used when you want to sort trace sessions being done.

Application - Example of Use
Let's say you have an application that operates in different modes (flashing, diagnostic,
custom, user, etc.). You could have a folder for each mode, so that trace files are
automatically sorted by the application's mode used (it is assumed, a USB channel is
connected):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
char tracesFolder[MAX_PATH];

char fullPath[MAX_PATH];

int mode = 2;

GetTempPathA(MAX_PATH, tracesFolder);

switch (mode)
{
// 1: Flashing
case 1:
sprintf_s(fullPath, MAX_PATH, "%sPCAN-Basic_Flashing", tracesFolder);
break;
// 2: Diagnostic
case 2:
sprintf_s(fullPath, MAX_PATH, "%sPCAN-Basic_Diagnostic", tracesFolder);
break;
// 3: Normal
case 3:
sprintf_s(fullPath, MAX_PATH, "%sPCAN-Basic_Normal", tracesFolder);
break;
// Unknown mode
default:
sprintf_s(fullPath, MAX_PATH, "%sPCAN-Basic_UnknownMode", tracesFolder);
break;

}
if (CreateDirectoryA(fullPath, NULL))
¢ if (CAN_Initialize(channelUsed, PCAN_BAUD 500K) == PCAN_ERROR_OK)
if (CAN_SetValue(channelUsed, PCAN_TRACE_LOCATION, fullPath, MAX_PATH) == PCAN_ERROR_OK)

printf("The location for trace files was successfully set to:\n");
printf(fullPath);

http://msdn.microsoft.com/en-us/library/aa365247(VS.85).aspx

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

}
else
printf("Error! Trace location could not be configured.\n");
}
else
printf("Channel @x%X could not be initialized\n", channelUsed);
}
else

printf("Folder for log file could not be created at:\n%s", fullPath);

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;

string tracesFolder = System.IO.Path.GetTempPath();
string fullPath;

int mode = 1;

switch (mode)

// 1: Flashing

case 1:
fullPath = System.IO.Path.Combine(tracesFolder, "PCAN-Basic_Flashing");
break;

// 2: Diagnostic

case 2:
fullPath = System.IO.Path.Combine(tracesFolder, "PCAN-Basic_Diagnostic");
break;

// 3: Normal

case 3:
fullPath = System.IO.Path.Combine(tracesFolder, "PCAN-Basic_Normal");
break;

// Unknwn mode

default:
fullPath = System.IO.Path.Combine(tracesFolder, "PCAN-Basic_UnknownMode");
break;

¥

System.IO.Directory.CreateDirectory(fullPath);
if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_TRACE_LOCATION, fullPath, (uint)fullPath.Length)
== TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("The location for trace files was successfully set to:");
Console.WritelLine(fullPath);
}
else
Console.WriteLine("Error! Trace location could not be configured.");
}
else
Console.WriteLine("Channel 0x{@:X} could not be initialized", channelUsed);

PCAN_TRACE_STATUS
This parameter helps the user to control the activity status of a trace session within the
PCAN-Basic API.

Note that if the tracing status is set to ON without having configured a destination path for
the trace file or without having configured the tracing mode, then the session process will
start with the default values, that is:
o The PCAN-Trace file will be placed in the folder where the calling process is located.
o The file name to use is the name of the used PCAN-Channel (PCAN_USBBUS1.trc, for
example).
o Existent files will not be overwritten, i.e., starting the trace process will fail.
The API will create one PCAN-Trace file and will fill it with data until the file reaches a
size of 10 megabytes.

Important Note: For messages to be written in the trace file, the receive queue must be read

actively, even if the application is only sending. Transmitted messages are also synchronized
over the reception queue.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Availability
It is available since version 1.3.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS?2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter can be activated or deactivated.

Defined Value Description \
PCAN_PARAMETER_OFF The Tracing is OFF.
PCAN_PARAMETER_ON The Tracing is ON.

Default Value

The default value of the Tracing mode is deactivated (PCAN_PARAMETER_OFF). After
activating it, the tracing functionality stays active until one of these possibilities happens:
o The tracing session is expressly deactivated.
o The used PCAN-Channel is disconnected (e.g., using the function CAN_Uninitialize).
o The configuration of the tracing session instructs the APl to stop tracing (e.g., the
maximum size for a trace file is reached).

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used to control a tracing session (start, stop, restart, etc.).

Application - Example of Use
Let’s say you want to allow the user of your application to decide when data should be
traced. You could allow this by simply invoking this parameter through a function that a user
could trigger using a button click (it is assumed, a USB channel is connected):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD traceState = PCAN_PARAMETER_ON;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

// Do work, and when needed, activate the trace functionality
if (CAN_SetValue(channelUsed, PCAN_TRACE_STATUS, &traceState, sizeof(traceState)) == PCAN_ERROR_OK)

printf("Trace session started successfully.\n");
//... trace as needed, and when finish, deactivate the trace functionality
traceState = PCAN_PARAMETER_OFF;
if (CAN_SetValue(channelUsed, PCAN_TRACE_STATUS, &traceState, sizeof(traceState)) ==
PCAN_ERROR_OK)

printf("Trace session finished.\n");

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

}
else
printf("Error! The trace session could not be stopped.\n");
}
else
printf("Error! The trace session could not be started.\n");
}
else

printf("Channel 0x%X could not be initialized\n", channelUsed);

Managed (Ci#)
ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint traceState = PCANBasic.PCAN_PARAMETER_ON;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

// Do work, and when needed, activate the trace functionality

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_TRACE_STATUS, ref traceState, sizeof(uint)) ==
TPCANStatus.PCAN_ERROR_OK)

{

@

Console.WriteLine("Trace session started successfully.");

//... trace as needed, and when finish, deactivate the trace functionality

traceState = PCANBasic.PCAN_PARAMETER_OFF;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_TRACE_STATUS, ref traceState, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("Trace session finished.");

}
else
Console.WriteLine("Error! The trace session could not be stopped.");
}
else
Console.WriteLine("Error! The trace session could not be started.");
}
else

Console.WriteLine("Channel 0x{@:X} could not be initialized", channelUsed);

PCAN_TRACE_SIZE

This parameter is used to set the maximum size in megabytes that a single PCAN-Trace file
can have. Note that trying to set the size for a file will fail if a tracing session is active.

Availability
It is available since version 1.3.0.

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS?2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This value is an integer representing the number of megabytes a file can store. To use the
default size (10 megabytes) the value of 0 must be set.

Kind of Size Valid Value

CUSTOM Size A value between 1 and 100 megabytes.
DEFAULT Size A value of 0 (defaults to 10 megabytes).

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Default Value
The default size value is 10 Megabytes. This allows to record about 166.000~ CAN messages
(Standard frames, with 8 data bytes).

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used to control the amount of data to be stored in a single file. According with the
tracing configuration, this parameter can be used to automatically stop a trace session (e.g.,
to record data until a given limit is reached).

Application - Example of Use
Let’s say you want to allow the user of your application to decide how big a trace should be.
You could allow this by simply invoking this parameter through a function that a user could
trigger using a button-click (it is assumed, a USB channel is connected):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD sizeToSet = 20;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)
{
// Set the desired size for a trace file, in this sample 20 MB
if (CAN_SetValue(channelUsed, PCAN_TRACE_SIZE, &sizeToSet, sizeof(sizeToSet)) == PCAN_ERROR_OK)

printf("Trace size set successfully. New size is %d MB\n", sizeToSet);
}
else
printf("Error! The size for the trace could not be set.\n");
}
else
printf("Channel @x%X could not be initialized\n", channelUsed);

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint sizeToSet = 20;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)
// Set the desired size for a trace file, in this sample 20 MB

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_TRACE_SIZE, ref sizeToSet, sizeof(uint)) ==
TPCANStatus.PCAN_ERROR_OK)

{
Console.WriteLine("Trace size set successfully. New size is {@} MB", sizeToSet);
}
else
Console.WriteLine("Error! The size for the trace could not be set.");
}
else

Console.WriteLine("Channel 0x{@:X} could not be initialized", channelUsed);

PCAN_TRACE_CONFIGURE
This parameter is used to configure the trace process and the file generated in a trace
session. Note that trying to configure the trace process will fail if a tracing session is active.

Availability
It is available since version 1.3.0.
Note that some configuration values were added after the creation of this parameter and are
therefore only available in newer versions. Newer configuration values contain information
about the version from which they are available within the “Possible Value” section.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Supported By
PCAN-ISA (Channels PCAN_ISABUS1 to PCAN_ISABUSS).
PCAN-DNG (Channel PCAN_DNGBUS1).
PCAN-PCI (Channels PCAN_PCIBUS1 to PCANPCIBUS16).
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).
PCAN-PCC (Channels PCAN_PCCBUS1 to PCAN_PCCBUS2).
PCAN-LAN (Channels PCAN_LANBUS1 to PCAN_LANBUS16).

Access Mode

This parameter is read/write. It can be set and read.
Possible Values g

This parameter can be configured with one of the following values or a combination of those:

\ Defined Value Description

TRACE_FILE_SINGLE A trace session is stored in a single and stays active until the
file reaches the maximum configured file size, or it is
deactivated, or the PCAN-Channel used is disconnected.

TRACE_FILE_SEGMENTED A trace session is stored in several files. A new file is created
when a previous file reaches the maximum configured size.
The tracing session stays active until it is deactivated, or the
PCAN-Channel used is disconnected.

TRACE_FILE_DATE The name of the trace file also includes the start-date of the
tracing session. The date is expressed using 8 digits with the
form YYYYMMDD, where YYYY are four digits for the year,
MM two digits for the month, and DD two digits for the day,
e.g., “20130228 PCAN_USBBUS1.trc” for the 28 of February
2013. If both, TRACE_FILE_DATE and TRACE_FILE_TIME are
configured, the file name starts always with the date:
"20130228140733_PCAN_USBBUS1_1.trc".

TRACE_FILE_TIME The name of the trace file also includes the start-time of the
tracing session. The time is expressed using 6 digits with the
form HHMMSS, where HH are two digits for the hour in 24
hours format, MM two digits for the minutes, and SS two
digits for the seconds, e.g., “140733 _PCAN_USBBUS1.trc” for
the 14:07:33 (02:07:33 PM). If both, TRACE_FILE_DATE and
TRACE_FILE_TIME are configured, the file name starts always
with the date: "20130228140733_PCAN_USBBUS1_1.trc".

TRACE_FILE_OVERWRITE It causes the overwriting of an existence trace file when a
new trace session is started. If this value is not configured,
trying to start a tracing process will fail if the file name to
generate is the same as one used by an existing file.

TRACE_FILE_DATA_LENGTH It is available since version 4.7.0

It causes the use of the “Data Length” column (‘I') instead of
the “Data Length Code” column (‘L’) within the trace file
(CAN FD connection only). The "Data Length" represents the
actual number of data bytes in a CAN or CAN FD message.
The "Data Length Code", as known as DLC, has a different
interpretation in CAN and CAN FD.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Default Value
The default value of this parameter is TRACE_FILE_SINGLE, which means a single file is
created and filled out until the maximum configured file size is reached.

Note that the name of the file to use is the name of the PCAN-Channel being traced (e.g.,
PCAN_USBBUSL.trc). If a file with the same name already exists, then the activation of the
tracing session will fail.

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used when the trace behavior desired is something other than the default behavior.

Application - Example of Use
Let’s say you want to trace CAN data, but you don’t know how many bytes you will trace, or

you know that the trace information will be more than the maximum file size allowed (100
megabytes). You could configure the trace process to use several files (segmentation) so that
the only limit is the storing unit used. In this way the application stays tracing data in
different files until you stop the process or an error on file creation occurs (it is assumed, a
USB channel is connected):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD traceState = PCAN_PARAMETER_ON;
DWORD sizeToSet = 20;

DWORD configuration;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

// Set the desired size for a trace file, in this sample 20 MB
if (CAN_SetValue(channelUsed, PCAN_TRACE_SIZE, &sizeToSet, sizeof(sizeToSet)) == PCAN_ERROR_OK)
{
printf("Trace size set to %d MB\n", sizeToSet);
// Configure the trace to save data in several files and to use the
// file creation time as part of the file name
configuration = TRACE_FILE_SEGMENTED | TRACE_FILE_TIME;
if (CAN_SetValue(channelUsed, PCAN_TRACE_CONFIGURE, &configuration, sizeof(configuration)) ==
PCAN_ERROR_OK)

printf("Trace configured successfully. Value: @x%X\n", configuration);
if (CAN_SetValue(channelUsed, PCAN_TRACE_STATUS, &traceState, sizeof(traceState)) ==
PCAN_ERROR_OK)

{
printf("Trace session started on channel @x%X\n", channelUsed);
else
printf("Error! The trace session could not be started.\n");
}
else
printf("Error! The trace could not be configured.\n");
}
else
printf("Error! The size for the trace could not be set.\n");
}
else

printf("Channel 0x%X could not be initialized\n", channelUsed);

Managed (C#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint traceState = PCANBasic.PCAN_PARAMETER_ON;
uint sizeToSet = 20;

uint configuration;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

// Set the desired size for a trace file, in this sample 20 MB
if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_TRACE_SIZE, ref sizeToSet, sizeof(uint)) ==

_

PEAK-System Documentation
PCAN - Parameters | ver. 3.0

TPCANStatus.PCAN_ERROR_OK)
{
Console.WriteLine("Trace size set to {0} MB", sizeToSet);
// Configure the trace to save data in several files and to use the
// file creation time (e.g., 100712 for 10:07:12) as part of the file name
configuration = PCANBasic.TRACE_FILE_SEGMENTED | PCANBasic.TRACE_FILE_TIME;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_TRACE_CONFIGURE, ref configuration,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("Trace configured successfully. Value: @x{@:X} ", configuration);

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_TRACE_STATUS, ref traceState,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("Trace session started on channel 0x{0:X}", channelUsed);

}
else
Console.WriteLine("Error! The trace session could not be started.");
}
else
Console.WriteLine("Error! The trace could not be configured.");
}
else
Console.WriteLine("Error! The size for the trace could not be set.");
}
else

Console.WriteLine("Channel 0x{@:X} could not be initialized", channelUsed);

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Using Electronic Circuits Parameters

These parameters are intended to condense features. Some CAN devices are equipped with
pins for digital and analog signals, that make providing electronic circuits with 1/0
functionality possible. Instead of offering separate APIs for this, the 1/O features are
accessible as parameters, over the functions CAN_GetValue/CAN_SetValue.

At the time of writing this documentation, only the PCAN-Chip USB module offers 1/0
capabilities in form of 5 digital input pins, that also can be configured as digital outputs, and
one analog input pin.

PCAN_IO_DIGITAL_CONFIGURATION

This parameter is used to configure the output mode of all digital Input / Output pins
available on a device. It allows the configuration of up to 32 pins, as a bit mask value.

Note that at the time of writing this documentation only PCAN-Chip USB based devices, with
a firmware version equal to or greater than 3.3.0, support the configuration of a maximum of
5 digital pins. For this reason, all other (unused) bits are automatically discarded from the bit
mask value passed as parameter. No error is generated by setting a bit for a nonexistent pin.

Availability
It is available since version 4.3.0.

Supported By
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter has a double-word resolution, which allows a value range between [O...
4294967295]. It is a bit mask, in which every bit represents a digital input.
Each digital input pin of the device can be set as digital output.

Bit Value Description \
0 The pin works as digital input.
1 The pin works as digital input and output.

BitO, the least significant bit, corresponds to Pin0; Bitl corresponds to Pinl, and so on until
Pin31.

Default Value
The default value for each pin (and so for the whole mask) is 0, meaning that all pins are
configured as digital input only (no digital outputs active).

88

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used when you want to provide electronic circuits with digital 1/0O functionality from a
CAN environment.

Application - Example of Use
Let’s say you have an electronic unit with some LEDs. You could configure the digital pins as
digital outputs so that you can light them up or turn them off from your CAN application (it is
assumed a PCAN-Chip USB, connected as PCAN_USBBUS1 channel, is used):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD configuration;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

// Flag value for configuring digital outputs from Pin® to Pin4

configuration = Ox1F;

if (CAN_SetValue(channelUsed, PCAN_IO_DIGITAL_CONFIGURATION, &configuration, sizeof(configuration)) ==
PCAN_ERROR_OK)

{
printf("All digital Pins (@ to 4) successfully configured as digital outputs.n");

}
else

printf("Error! The Pins could not be configured.\n");
}
else

printf("Channel 0x%X could not be initialized\n", channelUsed);

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint configuration;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

// Flag value for configuring digital outputs from Pin® to Pin4

configuration = Ox1F;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_IO_DIGITAL_CONFIGURATION, ref configuration,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

Console.WriteLine("All digital Pins (@ to 4) successfully configured as digital outputs.");
}
else
Console.WriteLine("Error! The Pins could not be configured.");
}
else
Console.WriteLine("Channel 0x{@:X} could not be initialized", channelUsed);

PCAN_IO_DIGITAL_VALUE
This parameter is used to set the output values represented by the digital pins available on a
device, as a bit mask value. Unlike PCAN_IO_DIGITAL_SET and PCAN_IO_DIGITAL_CLEAR, this
operation applies to all pins, i.e., each available pin is set to one of the two possible states.

Note that the bit mask allows setting the value of 32 pins, though, at the time of writing this
documentation only 5 digital pins are supported. For this reason, all other (not used) bits are
automatically discarded from the bit mask value passed as parameter. No error is generated
by setting a bit for a nonexistent pin.

Availability
It is available since version 4.3.0.

L

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Supported By
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).

Access Mode
This parameter is read/write. It can be set and read.

Possible Values
This parameter has a double-word resolution, which allows a value range between [O...
4294967295]. It is a bit mask, in which every bit represents the value for a digital output pin.
The value of each digital pin of the device can be set to “low” or “high”.

Bit Value Description \
0 The digital pin value is “Low”.
1 The digital pin value is “High”.

BitO, the least significant bit, corresponds to the value of Pin0; Bitl corresponds to the value
of Pin1, and so on until Pin31.

Default Value
The default value for each pin (and for the whole mask) is 0, meaning that the values of all
digital output pins are set to “Low”.

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used when you want to provide electronic circuits with digital /O functionality from a
CAN environment.

Application - Example of Use
Let’s say you have an electronic unit with some LEDs. You could set digital pins to “High”, (for
instance, Pin0 and Pin4) so that connected LEDs turn on (it is assumed a PCAN-Chip USB,
connected as PCAN_USBBUSI1 channel, is used):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD ledActivation;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)
{
// The Pin@ and Pin4 are set to high, all other Pins to "low"
ledActivation = @x11;
if (CAN_SetValue(channelUsed, PCAN_IO_DIGITAL_VALUE, &ledActivation, sizeof(ledActivation)) ==
PCAN_ERROR_OK)
{
printf("Pin@ and Pin4 were successfully set to 'high'.\n");
printf("Pinl, Pin2, and Pin3 were successfully set to 'low'.\n");
}
else
printf("Error! The Pin states could not be changed.\n");
}
else
printf("Channel 0x%X could not be initialized\n", channelUsed);

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint ledActivation;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

_

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

// The Pin®@ and Pin4 are set to high, all other Pins to "low"

ledActivation = ©@x11;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_IO_DIGITAL_VALUE, ref ledActivation,
sizeof(uint)) == TPCANStatus.PCAN_ERROR_OK)

{

Console.WriteLine("Pin@ and Pin4 were successfully set to 'high'.");
Console.WriteLine("Pinl, Pin2, and Pin3 were successfully set to 'low'. ");
}
else
Console.WriteLine("Error! The Pin states could not be changed.");
}
else
Console.WriteLine("Channel 0x{0:X} could not be initialized", channelUsed);

PCAN_IO_DIGITAL_SET
This parameter is used to configure the value of selected digital Output pins to “High” within
a device, using a bit mask value. Unlike PCAN_IO_DIGITAL_VALUE, only needed pins are set
to “High”; unwanted ones are not touched, i.e. they are not re-configured.

Note that at the time of writing this documentation only PCAN-Chip USB based devices, with
a firmware version equal to or greater than 3.3.0, support the configuration of a maximum of
5 digital pins. For this reason, all other (not used) bits are automatically discarded from the
bit mask value passed as parameter. No error is generated by setting a bit for a nonexistent

pin.
Availability

It is available since version 4.3.0.

Supported By
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).

Access Mode
This parameter is write-only. It can only be set.

Possible Values
This parameter has a double-word resolution, which allows a value range between [O...
4294967295]. It is a bit mask, in which every bit represents a digital pin.

Bit Value Description \

0 The digital pin at this position is ignored.

1 The value of the digital pin at this position
is set to “High”.

BitO, the least significant bit, corresponds to Pin0; Bitl corresponds to Pinl, and so on until
Pin31.

Default Value
Does not apply.

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

@

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

When to Use
It can be used when you want to provide electronic circuits with digital 1/O functionality from a
CAN environment.

Application - Example of Use
Let’s say you have an electronic unit with 5 LEDs. You have already turned 2 of them on (Pin0
and Pin4). You could use this parameter to turn on another one (for instance, Pin2), without
having to set again the other LEDs (it is assumed a PCAN-Chip USB, connected as
PCAN_USBBUS1 channel, is used):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD ledActivation;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

// The Pin2 is set to "high". Other Pins remain unchanged

ledActivation = 0x4;

if (CAN_SetValue(channelUsed, PCAN_IO DIGITAL_SET, &ledActivation, sizeof(ledActivation)) ==
PCAN_ERROR_OK)

{
printf("Pin2 was successfully set to 'high'.\n");
}
else
printf("Error! The state of Pin2 could not be changed.\n");
}
else
printf("Channel 0x%X could not be initialized\n", channelUsed);

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint ledActivation;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

{
// The Pin2 is set to "high". Other Pins remain unchanged
ledActivation = @x4;
if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_IO DIGITAL_SET, ref ledActivation, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)
{
Console.WriteLine("Pin2 was successfully set to 'high'.");
}
else
Console.WriteLine("Error! The state of Pin2 could not be changed.");
}
else

Console.WriteLine("Channel 0x{0:X} could not be initialized", channelUsed);

PCAN_IO_DIGITAL_CLEAR
This parameter is used to configure the value of selected digital Output pins to “Low” within
a device, using a bit mask value. Unlike PCAN_IO_DIGITAL_VALUE, only needed pins are set
to “Low”; unwanted ones are not touched, i.e., they are not re-configured.

Note that at the time of writing this documentation only PCAN-Chip USB based devices, with
a firmware version equal to or greater than 3.3.0, support the configuration of a maximum of
5 digital pins. For this reason, all other (not used) bits are automatically discarded from the
bit mask value passed as parameter. No error is generated by setting a bit for a nonexistent

pin.

Availability
It is available since version 4.3.0.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Supported By
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).

Access Mode
This parameter is write-only. It can only be set.

Possible Values
This parameter has a double-word resolution, which allows a value range between [O...
4294967295]. It is a bit mask, in which every bit represents a digital pin.

Bit Value Description \
0 The digital pin at this position is ignored. \J
1 The value of the digital pin at this position

is set to “Low”.

BitO, the least significant bit, corresponds to Pin0; Bitl corresponds to Pinl, and so on until
Pin31.

Default Value
Does not apply.

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used when you want to provide electronic circuits with digital /O functionality from a
CAN environment.

Application - Example of Use
Let’s say you have an electronic unit with 5 LEDs. You have already turned 3 of them on
(Pin0, Pin2, and Pin4). You could use this parameter to turn off one of those (for instance
Pin0), without having to expressly set the remaining four again, two LEDs on and two LEDs
off, respectively (it is assumed a PCAN-Chip USB, connected as PCAN_USBBUS1 channel, is
used):

Native (C++)
TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD ledClearing;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)

// The Pin@ is set to "low". Other Pins remain unchanged

ledClearing = 0x1;

if (CAN_SetValue(channelUsed, PCAN_IO_DIGITAL_CLEAR, &ledClearing, sizeof(ledClearing)) ==
PCAN_ERROR_OK)

{
printf("Pin@ was successfully set to 'low'.\n");

}

else

printf("Error! The state of Pin@ could not be changed.\n");

else
printf("Channel 0x%X could not be initialized\n", channelUsed);

Managed (Ci#)
ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint ledClearing;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

// The Pin@ is set to "low". Other Pins remain unchanged

ledClearing = 0Ox1;

if (PCANBasic.SetValue(channelUsed, TPCANParameter.PCAN_IO_DIGITAL_CLEAR, ref ledClearing, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)

{
Console.WriteLine("Pin@ was successfully set to 'low'.");
}
else
Console.WriteLine("Error! The state of Pin@ could not be changed.");
}
else

Console.WriteLine("Channel @x{@:X} could not be initialized", channelUsed);

PCAN_IO_ANALOG_VALUE
This parameter is used for reading analog voltages from the analog input pin of a device.

Note that at the time of writing this documentation only PCAN-Chip USB based devices, with
a firmware version equal to or greater than 3.3.0, support only 1 analog pin.

Availability
It is available since version 4.3.0.

Supported By
PCAN-USB (Channels PCAN_USBBUS1 to PCAN_USBBUS16).

Access Mode
This parameter is read only. It cannot be written.

Possible Values
This parameter has a double-word resolution, which allows a value range between [O...
4294967295]. The returned value represents the direct value from the A/D converter, which
is an unsigned integer value.
The returned value must be converted into a signed value, considering the external wiring.

Default Value
Does not apply.

Initialization Status
The PCAN-Channel must be initialized before using this parameter.

When to Use
It can be used when you want to provide electronic circuits with digital 1/O functionality from
a CAN environment.

Application - Example of Use
Let’s say you have an electronic unit with a potentiometer. You could read the state of it and
present the calculated value on your application or take some decisions according on the
current value (it is assumed a PCAN-Chip USB, connected as PCAN_USBBUS1 channel, is
used):

Native (C++)

TPCANHandle channelUsed = PCAN_USBBUS1;
DWORD analogValue;

if (CAN_Initialize(channelUsed, PCAN_BAUD_500K) == PCAN_ERROR_OK)
{

L

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

if (CAN_GetValue(channelUsed, PCAN_IO_ANALOG_VALUE, &analogValue, sizeof(analogValue)) == PCAN_ERROR_OK)

printf("Raw value of analog Pin is %d\n", analogValue);
}
else
printf("Error! The value of the analog Pin could not be read.\n");
}
else
printf("Channel 0x%X could not be initialized\n", channelUsed);

Managed (Ci#)

ushort channelUsed = PCANBasic.PCAN_USBBUS1;
uint analogValue;

if (PCANBasic.Initialize(channelUsed, TPCANBaudrate.PCAN_BAUD_500K) == TPCANStatus.PCAN_ERROR_OK)

if (PCANBasic.GetValue(channelUsed, TPCANParameter.PCAN_IO_ANALOG_VALUE, out analogValue, sizeof(uint))
== TPCANStatus.PCAN_ERROR_OK)

{
Console.WriteLine("Raw value of analog Pin is {@}", analogValue);
}
else
Console.WriteLine("Error! The value of the analog pin could not be read.");
}
else

Console.WriteLine("Channel 0x{0:X} could not be initialized", channelUsed);

PCAN - Parameters | ver. 3.0

PEAK-System Documentation

Appendix A: Debug-log over Registry

These steps will guide you activating/deactivating the Logging functionality of PCAN-Basic

using the registry of Windows.

Activating a Log Session

1.
2.

Stop all applications using the PCAN-Basic.

Open the Windows's Registry (e.g. using the Windows Start menu / “Execute...” and
typing “regedit”).

Create the following registry key under the [HKEY_CURRENT_USER] hive:
\Software\PEAK-System\PCAN-Basic\Log

To specify the data to be logged, add a new DWORD value to the key created before,
and call it “Flags”.

Sets the value for “Flags” according to your needs. This value is the numerical value
of any LOG_FUNCTION_* define or a logic-OR combination of them.

To specify the directory where the log file should be created, add a new STRING
value to the key created before, and call it “Path”.

Sets the value for “Path” with the full path to the directory you want.

At this point, starting any application that use the PCAN-Basic API will cause the automatic

generation of a debug session.

Deactivating a Log Session

1.
2.

5.

Stop all applications using the PCAN-Basic.

Open the Windows's Registry (e.g. using the Windows Start menu / “Execute...” and
typing “regedit”).

Locate the registry hive [HKEY_CURRENT_USER].

Search for the following registry key:

\Software\PEAK-System\PCAN-Basic\Log

Delete the key and its values.

At this point, starting any application that use the PCAN-Basic will not cause logging

operations anymore.

VERY IMPORTANT NOTE
Please don't forget to delete the created key after your debug session is done. If you leave

the key, all PCAN-Basic applications running under your Windows account will remain writing

data to their log files, generating in this way huge text files that consume hard-disk space

unnecessarily.

")

PEAK-System Documentation

Appendix B: PCAN-Trace Format 1.1

The PCAN-Basic APl uses the PCAN-Trace format 1.1 for channels with normal CAN (non FD),
which is used by PCAN-Explorer 3.0.2, PCAN-Explorer 4, PCAN-Trace 1.5, PCAN-View 3, and
the Peak-Converter 1. This format is used for channels initialized in “normal mode”, that is
channels initialized using the function CAN_Initialize, doing communication over the
functions CAN_Read and CAN_Write.

Example
;SFILEVERSION=1.1
;SSTARTTIME=37704 .5364870833
C:\TraceFile.trc
Start time: 24.03.2003 12:52:32.484
PCAN-Net: TestNet
F Columns description:
F +-Message Number
7 | +Time Offset (ms)
7 | | +1 e
| | | +ID (hex)
; | | | | +Data Length Code
7 | | | | | +Data Bytes (hex)
;] | | |0
et —mm- $mmm= == mmmmfmm= 4 =% == mm mm —m —m —m -
1) 1059.9 Rx 0300 7 00 OC 00 00 04 0C 0O
2) 1283.2 Rx 0300 7 00 00 OO0 00 04 0C OO
) 1298.9 Tx 0400 2 00 00
4) 1323.0 Rx 0300 7 00 00 OO0 00 06 OO0 OO
5) 1346.8 Warng FFFFFFFF 4 00 00 00 04 BUSLIGHT
&) 1349.2 Error 0008 4 00 19 08 08
Description
File Coding:

The Trace file is ASCII coded.
Comment Lines:
Lines prefixed with a Semicolon are “Comments” and are ignored while loading Trace files,
except for S-Keywords.
$-Keywords:
These are defined informations that gives different information about the Trace file. They
appear as a comment line. Possible keywords are:
e SFILEVERSION: contains the major and minor version of the file format, i.e. “1.1” for
this version.
e SSTARTIME: contains the absolute start time of the trace file:
e Format: Floating point, point as decimal separator.
e Value: the integral part represents the number of days that have passed
since 30" December of 1899. The fractional part, the fraction of a 24 hour
day that has elapsed, resolution is 1 millisecond.

Columns:
The information contained in a Trace file is accommodated within 5 columns:

L

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

e Message Number: Index of a recorded message (ignored while loading the trace file).
o Time Offset (ms): Time offset since start of the trace session. The time has a
resolution of 1/10 milliseconds.

o Format: Floating point, point as decimal separator.

o Value: the integral part represents the milliseconds offset. The fractional part
is 1/10 milliseconds (1 digit).

e Type: Represents the kind of message recorded. Possible message types are:

o “Rx”: Message was received (in PCAN-Basic, using the function CAN_Read).

o “Tx”: Message was sent (in PCAN-Basic, using the function CAN_Write).

o “Warng”: Message represents a received Warning-Frame.

o “Error”: Message represents an Error-Frame.

e ID (hex): Represents the CAN-ID in hexadecimal notation. Possible values are:

o 4 digits for 11-bit CAN-IDs (0000-07FF).

o 8 digits for 29-bit CAN-IDs (00000000-1FFFFFFF).

o Special case: “FFFFFFFF” for Warning-Frames.

e Data Length Code: It is a number between 0-8 representing the amount of data
contained within the message recorded.

e Data Bytes (hex): represents the data of a recorded message. According with the
message type, the data can be:

o If the message represents common CAN data: so many data bytes, in
hexadecimal notation, as the Data Length Code indicates.

If the message represents a remote request frame: “RTR”

o If the message represents a Warning-Frame: 4 data bytes expressed in
hexadecimal notation, using Motorola format. At the end of this line, the
short name of the Warning (ignored while loading the Trace file). Example:
“00 00 00 04 BUSLIGHT”.

o If the message represents an Error-Frame: 4 data bytes expressed in
hexadecimal notation.

PCAN - Parameters | ver. 3.0

PEAK-System Documentation

Appendix C: PCAN-Trace Format 2.0

The PCAN-Basic APl uses the PCAN-Trace format 2.0 for channels with FD capabilities (CAN-FD),
which is used by PCAN-View 4, PEAK-Converter 2, and PCAN-Explorer 6. This format is used for
channels initialized in “FD mode”, that is channels initialized using the function CAN_InitializeFD,
doing communication via the functions CAN_ReadFD and CAN_WriteFD.

Example

; SFILEVERSION=2.0
; $STARTTIME=4173€.371c038773
; SCOLUMNS=N, 0, T,B,I,d,R,1,D

Bus Name Connection Protocol
¥ 1 Connectionl TestNet@pcan usb CAN
; B S ot O S S AR S VeSS S S O S RE VISR
; Message Time Type ID Rx/Tx
5 Number Offset | Bus [hex] | Reserved
3 | [ms] [1 | | | Data Length
7 | | [| | | | Data [hex] ...
; | | [| A Y
P +o————— e i i e i i
1] DT 1 0300 R« -— 7 00 00 00 00 04 00 00
Z DT 1 0300 Rx -= 7 00 00 00 00 04 00 00
3 DT 1 1400 Tx - 2 00 00
4 DT 1 300 Rx - 7 00 00 00 00 Oe 00 00
5 FD 1 0500 Tx - 12 01 02 03 04 05 0€e 07 08 09 0a OB OC
€ ER 1 Rx - 04 00 02 00 00
7 EV User-defined event text
8 SP:1 Rx - 00 00 00 08
9 ER 1 Rx - 04 00 02 08 00

Description
File Coding:
The Trace file is ASCII coded.
Comment Lines:

Lines prefixed with a Semicolon are “Comments” and

except for S-Keywords.
$-Keywords:

are ignored while loading Trace files,

These are defined informations that gives different information about the Trace file. They
appear as a comment line. Possible keywords are:

e SFILEVERSION: contains the major and minor version of the file format, i.e. “2.0” for

this version.

e SSTARTIME: contains the absolute start time of the trace file:

e Format: Floating point, point as decimal separator.

e Value: the integral part represents the number of days that have passed
since 30" December of 1899. The fractional part, the fraction of a 24 hour
day that has elapsed, resolution is 1 millisecond.

e SCOLUMNS: represents the columns contains the trace file. The column order cannot
be changed. But some columns are optional. The obligatory order is as follow
(optional columns are enclosed in square brackets): [N],0,[B],T,1,d,[R],I/L,D.

L

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Columns:
The information contained in a Trace file is accommodated within 10 columns, though some
of them are optional:
e N: Message number, index of recorded message. Optional.
e O:Time offset since start of the trace. Resolution: 1 microsecond.
The value before the decimal separator represents milliseconds. The value behind
the decimal separator represents microseconds (3 digits).
e B:Bus (1-16). Optional.
e T:Time of message:
o DT: CAN or J1939 data frame.
FD: CAN FD data frame.
FB: CAN FD data frame with BRS bit set (Bit Rate Switch).
FE: CAN FD data frame with ESI bit set (Error State Indicator).
Bl: CAN FD data frame with both bits set, BRS and ESI.
RR: Remote Request frame.
ST: Hardware status change.

0 O O O O O O

ER: Error frame.

o EV:Event. User-defined text. Begins directly after 2-digit type indicator.

e |: CAN-ID (Hex):

o 4 digits for 11-bit CAN-IDs (0000-07FF).
o 8 digits for 29-bit CAN-IDs (00000000-1FFFFFFF).

e d: Direction: Indicates whether the message was received (‘Rx’) or transmitted (‘Tx’).

e R: Reserved. Only used for J1939 protocol. Contains ‘-’ for CAN buses. For J1939
protocol, contains destination address of a transport protocol PDU2- large message.
Optional for files that contain only CAN or CAN FD frames.

e |: Data Length (0-1785). This is the real number of data bytes, not the Data Length
Code (0..15). Optional. If omitted, the Data Length Code column (‘L’) must be
included.

e L: Data Length Code (0-15). Optional. If omitted, the Data Length (‘I') must be
included.

e D: Data. 0-1785 data bytes in hexadecimal notation.

PEAK-System Documentation

PCAN - Parameters | ver. 3.0

Appendix D: Acceptance Code and
Mask Calculation

An acceptance filter is composed of an acceptance code and an acceptance mask. These values are
used to set an 11-bit acceptance filter (using the parameter PCAN_ACCEPTANCE_FILTER_11BIT), or a
29-bit acceptance filter (using the parameter PCAN_ACCEPTANCE_FILTER_29BIT), depending on the
needs you may have in your application. The way how the code and mask values are calculated is the
same, regardless if the IDs are 11-bit or 29-bit.

Take into account that PCAN Hardware filtering is based on the SJA1000 CAN controller, which uses
only one acceptance filter for both, standard (11-bit) and extended IDs (29-bit). Though it is allowed,
mixing of 11-bit and 29-bit filters is not advisable.

As example, the acceptance filter for the standard IDs (11-bit) 101h, 401h, and 501h, will calculated:

Code

The acceptance code is a value resulting after applying a logical AND operation between all IDs
wanted to be received.

101h: 0000 0001 0000 0001 b
401h: 0000 0100 0000 0001 b
501h: 0000 0101 0000 0001 b
——————————————————————————— AND
0000 0000 0000 0001 => Code=1h

Mask

The acceptance mask is a value resulting after applying a kind of logical exclusive OR (XOR) between
all IDs wanted to be received, meaning, that only one difference between two bits within the wanted
IDs is enough to satisfy the XOR condition and to mark that bit as “don’t care bit” (The “don’t care
bit” value is ‘1’):

15 0
101h: 0000 0001 0000 0001 b
401h: 0000 0100 0000 0001 b
501h: 0000 0101 0000 0001 b
——————————————————————————— XOR
0000 0101 0000 0000 => Mask=500h

Note that, even when using an acceptance filter, it is possible to still receive unwanted messages. For
instance, in the example above the standard ID 1h could also be received.

More information about SJA1000 acceptance filter can be found in the SJA1000 specifications
document.

@

https://www.nxp.com/documents/application_note/AN97076.pdf
https://www.nxp.com/documents/application_note/AN97076.pdf

