PCAN-MIO

Universal Controller for CAN Applications

User Manual

Document version 1.13.0 (2019-03-18)

Relevant products

Product Name	Model	Part number	Firmware version
PCAN-MIO	Industrial connector (Phoenix)	IPEH-002187	3.3 (from ser. no.
PCAN-MIO	Automotive connector (Tyco)	IPEH-002187-A	100)

PCAN® is a registered trademark of PEAK-System Technik GmbH. Other product names in this document may be the trademarks or registered trademarks of their respective companies. They are not explicitly marked by $^{\text{M}}$ or $^{\text{B}}$.

© 2019 PEAK-System Technik GmbH

Duplication (copying, printing, or other forms) and the electronic distribution of this document is only allowed with explicit permission of PEAK-System Technik GmbH. PEAK-System Technik GmbH reserves the right to change technical data without prior announcement. The general business conditions and the regulations of the license agreement apply. All rights are reserved.

PEAK-System Technik GmbH Otto-Roehm-Strasse 69 64293 Darmstadt Germany

Phone: +49 (0)6151 8173-20 Fax: +49 (0)6151 8173-29

www.peak-system.com info@peak-system.com

Document version 1.13.0 (2019-03-18)

Contents

1 1	Introduction	5
1.1	Properties at a Glance	5
1.2	Operation Requirements	6
1.3	Scope of Supply	7
2 F	Function Characteristics of the Basic Module	8
2.1	Supply	8
2.2	Analog Inputs	9
2.3	Analog Outputs	9
2.4	Digital Inputs	9
2.5	Digital Outputs	10
2.6	Function Blocks	10
2.7	PPCAN Protocol	12
2.8	Module Reset	12
3 5	Startup	13
3.1	Module Settings	13
3.2	Basic Connections	15
3.3	Output States at Power-up	16
3.4	Software Installation	16
3.5	Altered Configuration Structure from Serial Number 100	18
4 F	Front Panel Elements	20
4.1	Pin Assignment	20
4	.1.1 Industrial Connector (Phoenix)	20
	.1.2 Automotive Connector (Tyco)	23
	CAN Bus Termination (Switch)	25
	Module ID (Rotary Switch)	26
4.4	Status LED	27

5	Alternat	ive CAN Transceiver Modules	28
6	Technica	1 Specifications	30
Ар	pendix A	CE Certificate	33
Ар	pendix B	Dimension Drawings	34
Ар	pendix C	Module Resources	36

.PEAK

4

1 Introduction

The Multiple Input Output module (MIO) is a universal, modular controller for use both in the industrial and automotive fields.

The module has two CAN interfaces as well as multiple analog and digital inputs and outputs. Incoming signals can be processed by the microcontroller and then forwarded to the CAN interfaces or output channels.

For this purpose, the behavior of the PCAN-MIO module can be freely configured using comprehensive Windows software. A large number of function blocks and other settings are available to help the user in creating such a configuration. A bus structure also enables expansion of the number of inputs and outputs with additional modules. This permits implementing individual customer requirements.

1.1 Properties at a Glance

- 2 High-speed CAN channels via pluggable transceiver modules
- Alternatively, Low-speed, Single-wire, and opto-decoupled Highspeed modules, as well as High-speed modules without wake-up function available
- Compliant with CAN specifications 2.0A (11-bit ID) and 2.0B (29-bit ID)
- Wake-up via a separate input or the CAN bus
- CAN termination switchable
- 8 digital inputs with low-pass performance
- 8 digital outputs, 2 of them PWM-capable

- 6 analog inputs, measuring range unipolar 0 10 V, resolution
 10 bit, sample rate 1 kHz
- 2 analog outputs, 0 10 V, each 20 mA, resolution 10 bit
- Suitable for use in automotive applications
- Comprehensive configuration with the Windows software PPCAN-Editor 2
- Module can store up to 15 configurations
- CAN gateway between the buses
- Various function blocks for data linking and modification
- Available with industrial connectors (Phoenix spring terminal connectors) or automotive connectors (Tyco connectors)
- Aluminum profile casing with mounting flange
- DIN rail mounting option on request
- 9 to 27 V voltage supply, overvoltage and reverse polarity protection
- Extended operating temperature range of -40 to +85 °C (-40 to +185 °F)

1.2 Operation Requirements

- Power source, nominal 12 V DC, 9 - 27 V possible

For the configuration:

- Computer with Windows 10, 8.1, or 7 (32/64-bit)
- CAN interface of the PCAN series
 (in scope of supply when ordering the Set)
- CAN cabling with correct termination

1.3 Scope of Supply

- PCAN-MIO basic module in aluminum casing
- 4 spring terminal strips 11-pin (industrial model IPEH-002187)¹
- 32-pole and 12-pole plug with crimp contacts (automotive model IPEH-002187-A)¹
- Configuration software PPCAN-Editor 2 for Windows
- Documentation in PDF format
- └── CAN interface PCAN-USB with order of the Set

¹ Connector types: see technical specifications on page 30

2 Function Characteristics of the Basic Module

This chapter describes the essential functional characteristics of the PCAN-MIO basic module.

There is a list of all logical resources (I/O function, I/O number) which are provided by the PCAN-MIO module in the Appendix C on page 36.

2.1 Supply

The internal 5-Volt supply is provided by a switching regulator. This regulator also meets the 5-Volt needs of additional boards and external low-power consumers such as sensors. The dimensioning covers an overall need of 2 A.

At the power input protection is provided against overvoltage and reversed polarity. With the help of two internal control lines the microcontroller can switch internal consumers on or off and activate self-holding. To handle brownouts, a comparator checks the internal 5-Volt supply and triggers a reset if necessary (smaller than 4.35 V). The CAN transceiver modules are wake-up-capable and are permanently supplied with input voltage.

The PCAN-MIO module can be activated by an external control connection as an alternative to the CAN wake-up. After booting the microcontroller can itself control the power supply by means of the already mentioned self-holding. External sensors are supplied with 5 V, protected and loadable to a max. of 500 mA. In case of a short-circuit the continued work of the microcontroller is assured by the decoupling of the internal 5-Volt supply. A reference of 5 V is provided for analog, internal use.

2.2 Analog Inputs

There are six analog inputs with pull-down circuit (12 k Ω), low-pass performance and overvoltage protection. The default measuring range is from 0 to 10 V. Analog measurements are unipolar, singleended, have a resolution of 10 bit (A/D converter) and referenced to a 5 V, 0.2 % accuracy and a temperature coefficient of 20 ppm.

The measuring range for the individual inputs can be adapted by a voltage divider. Regarding this subject please contact PEAK-System (contact information: see on page 2).

2.3 Analog Outputs

The two analog outputs are derived from a 10-bit D/A converter. The standard output voltage is 0 to 10 V for a maximum current drain of 20 mA. The outputs are short-circuit-proof. As an option, instead of the internal reference of 5 V, the supply voltage VE can be specified as a reference (hardware modification required). In this case, the internal reference is 1/3 of the supply voltage VE, however, it is limited to 5.1 V.

The internal reference is used as a standard. Regarding the optional external reference please contact PEAK-System (contact information: see on page 2).

2.4 Digital Inputs

There are eight digital inputs with low-pass performance and hysteresis behavior. In groups with one, two or three inputs, pull-up and pull-down resistors can be connected, for example for contacts.

The switch thresholds are 4 V (High) and 3 V (Low). For the powersave mode the pull-up circuits can be shut down by the microcon-

troller. The inputs DIN0 to DIN4 are connected directly to the inputcapture pins of the microcontroller as fast inputs to determine frequencies and the duty cycles. The DIN5 to DIN7 inputs are for the static status recognition (max. possible switching frequency: approx. 1 kHz).

2.5 Digital Outputs

The eight digital outputs are subdivided into six protected, statically addressable low-power switches (DOUT2 to DOUT7, max. 0.6 A) and two protected, PWM-capable high-side switches (DOUT0 and DOUT1, max. 1.4 A). The high-side switches are allocated to PWM-capable timer outputs (HW-PWM). In the case of the low-power switches, a configuration can be used to decide for each output whether it should work as high-side or low-side switch or be inactive. When used as low-side switch, an output can be operated with up to 30 V against ground.

The protective measures relate to excessive voltage, current, and temperature. The high-side switch is supplied with power directly from the module's power connection. Protection is provided against reverse poling of the supply voltage.

2.6 Function Blocks

This table is an overview of the various function blocks available for processing the data with the microcontroller.

You can obtain details about the individual function blocks from the reference tables which come with the configuration program PPCAN-Editor for Windows which is included in the delivery.

Function block	Description
Identity	Copies the input variable to the output variable.
Scaling	Conversion of an input value, with multiplicators and offset; the result is copied into the output variable.
Hysteresis	The output is dependent on the input value set to one of two pre-defined values.
Monoflop	The output is set to one of two pre-defined values depending on the input value for a pre-defined period.
Extended Hysteresis	Depending on an input value the output is timeout activated for a pre-defined period (set to 1). A second input acts as an enable signal.
Switch Delay	Switch-on, switch-off delay or a combination of the two.
Lowpass	Realization of a lag element by a low-pass with an adjustable time.
Characteristic Curve	The input signal is converted by applying a pre-defined characteristic curve.
Characteristic Curve with Limit	Like the characteristic curve but in this case values specified outside the characteristic curve are returned.
Characteristic Map	The input signal is converted using a pre-defined surface which is composed from a list of characteristic curves.
Characteristic Map with Limit	Like the characteristic map but in this case values specified outside the surface are returned.
Small Map	The two inputs indicate a position within a grid of 12 fields. The return values of the fields are specified by the default assignment tables.
Ramp Counter	Each time a function is called the counter counts one more step from a lower to an upper limit and then begins again at the lower value.
Counter with Clock and Reload Input	Counter for flanks to an input
PI Element	Simple PI regulator with reference and actual value inputs
PIDT1 Element	PIDT1 regulator
Difference	Help function block for the PIDT1 regulator
Math Function	Collection of various mathematical and logical functions
Binary Field	Compiles a sequence of digital data into a binary value.

2.7 PPCAN Protocol

The PCAN-MIO module is configured via a connected CAN bus per PPCAN protocol (point-to-point CAN), a development achieved by PEAK-System Technik GmbH. The PPCAN protocol permits as a principle the data communication between two specified CAN nodes, i.e., CAN data are transmitted to a specific target. In this way configuration data transmissions can be directed to one PPCANcapable module or to a transmitted PCAN-MIO module on the CAN bus.

Note: The PPCAN protocol uses the **CAN ID 7E7h** for communication. Do not use this CAN ID for further communication of CAN nodes in a net.

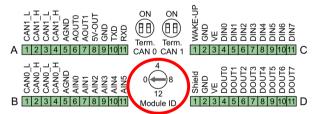
2.8 Module Reset

The module has no separate switch or input for a reset. You can reset the PCAN-MIO module by separating it for a short time from the supply. An option for switching off, for example, is the selfhold function controlled via CAN; the subsequent restart can be triggered by a wake-up signal.

3 Startup

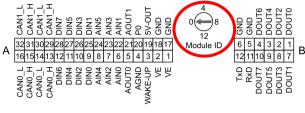
This chapter describes the preparations necessary to ensure that the PCAN-MIO module can receive and transmit data via a connected CAN bus. This section does not yet discuss how to create and apply a configuration. There is a guide on this subject in the help pages provided with the Windows-based PPCAN-Editor.

The description assumes that you initially connect only one PCAN-MIO module via a High-speed CAN bus to a PC with a Windows operating system.

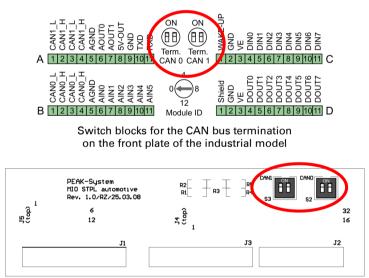

Please read through all the sections in this chapter.

Note: For the configuration of the PCAN-MIO module, a CAN interface of the PCAN series (e.g. PCAN-USB) is required.

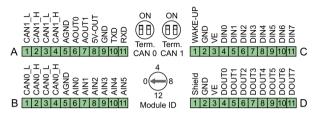
3.1 Module Settings

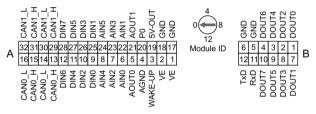

Settings for the module ID and a CAN termination can be made using switches on the PCAN-MIO module.

Please check that the rotary switch for the Module ID is set to 0.


Rotary switch for the module ID on the front plate of the industrial model

Rotary switch for the module ID on the front plate of the automotive model


Since in the assumed case the PCAN-MIO module is the sole node on the High-speed CAN bus connected via a direct line to the CAN interface of a PC, the **termination** must be activated. The two DIP switches on the switch block for CAN 0 must be in the upper position **ON**.


Switch blocks for the CAN bus termination (automotive model), rear side of the connector board when the PCAN-MIO housing is open

3.2 Basic Connections

Connector pin assignment industrial model

Connector pin assignment automotive model

The following pins are used to connect the CAN bus:

Line	Connection Industrial	Connection Automotive	Comment
CAN0_L	B1/B3	A14/A16	Ports with the same signal name are
CAN0_H	B2/B4	A13/A15	internally connected.

The operation of the PCAN-MIO module requires a **voltage source** with a nominal 12 V direct current voltage (9 - 27 V possible). The connection is made using these pins:

Line	Connection Industrial	Connection Automotive	Comment
GND	C2/D2	A17/A18	Ports with the same signal name are
VE	C3/D3	A1/A2	internally connected.

When supply voltage is present, the module starts operation only on a wake-up signal. Depending on the CAN transceiver equipment

this happens automatically, or you have to apply a High stage to the external wake-up line.

Line	Connection Industrial	Connection Automotive
WAKE-UP	C1	A3

The PCAN-MIO module has started operation when the **status LED** blinks green.

3.3 Output States at Power-up

After powering up the module and <u>before</u> a configuration is read from the EEPROM the outputs have the following states:

Outputs	State	
DOUT high impedance (tri-state		
AOUT	0 V	
5V-OUT	high impedance (tri-state)	

3.4 Software Installation

The module is configured using the included PPCAN-Editor, which runs on a Windows platform, via a CAN bus connection between the computer with CAN interface from PEAK-System and the PCAN-MIO module.

- This is how to install the PPCAN-Editor:
 - 1. Start the setup program from the supplied CD, directory Tools/PPCAN-Editor. Confirm the possible User Account Control request.

PEAK

Startup screen of the installation program for the PPCAN-Editor

 Follow the instructions of the setup program until you come to the step Select Hardware Profiles. At this point select at least both entries for the PCAN-MIO module so that it will be supported by the PPCAN-Editor.

PPCAN-Editor 2		×
Select Hardware Profiles Select the Hardware Profile application.	es that should be installed for the	PEAK
In the options list beside, select the checkboxes for the profiles that you would like to have installed. The disk space fields reflect the requirements of the profiles you have selected.	CF CAN Usg P RCAN MID P PCAN MID (32-Bit) MU-Thermocouple1 CAN	5 k 35 k 9 k 11 k 28 k
	Disk Space Required: Disk Space Remaining:	45 k 58130329 k
	< Back	Next > Cancel

Selection of the hardware profile for the PCAN-MIO module

3. Follow the remaining instructions of the setup program.

You can then launch the PPCAN-Editor, create a configuration, and transmit this to the PCAN-MIO module. Find relevant information in the help of the PPCAN-Editor. See also some introductory video tutorials to the PPCAN-Editor in the Support area on our website (www.peak-system.com).

Note: The PPCAN-Editor uses the **CAN ID 7E7h** for communication with the PCAN-MIO module. Do not use this CAN ID for further communication of CAN nodes in a net.

3.5 Altered Configuration Structure from Serial Number 100

From serial number 100 PCAN-MIO modules work with an internally altered configuration structure. Therefore, at creation of a new configuration in the PPCAN-Editor you must select the appropriate hardware profile:

PCAN-MIO serial number	MIO hardware profile to be used	
up to 99	PCAN-MIO	
from 100	PCAN-MIO (32-Bit)	

Configurations being created based on the other MIO hardware profile cannot be directly sent to a PCAN-MIO module.

- Do the following to adapt a configuration to another MIO hardware profile:
 - 1. In the PPCAN-Editor open the present MIO configuration.
 - 2. Select the menu command **Edit** > **New Configuration**.

The window for selecting a hardware profile is shown.

3. Depending on the MIO hardware profile used presently select the other one. When updating to a PCAN-MIO module

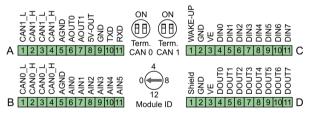
with serial number 100 and up, this is **\$1B PCAN-MIO (32-Bit)**, in the vice versa case accordingly **\$14 PCAN-MIO**.

- Create the module-specific CAN configuration on the new tab in the window CAN Objects. This is done on basis of the General CAN objects. When matching the entries, you can use the previous module-specific CAN configuration for orientation.
- 5. Open the configuration windows of the previous and the new configuration (**Config XY**).
- From each tab of the present configuration, copy all entries onto the tab of the new one. You can use the known key shortcuts for selecting, copying, and inserting under Windows.
- 7. In the **CAN Objects** window, delete the former configuration by executing the corresponding context menu command on the configuration's tab.

Note: New I/O functions which are only available in the hardware profile "\$1B PCAN-MIO (32-Bit)" cannot be copied to configurations based on the profile "\$14 PCAN-MIO".

4 Front Panel Elements

This chapter describes the elements present on the front of the PCAN-MIO module housing. They involve connections, the switches for the CAN bus termination, the rotary switch to set the module ID and the status LED.


If you use an alternative plug-in board with an appropriately modified front panel the elements may be different from the standard elements mentioned here.

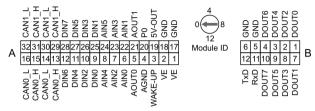
4.1 Pin Assignment

This section describes the functional assignment of all pin connections. There is a list of all logical resources (I/O function, I/O number) which are provided by the PCAN-MIO module in the Appendix C on page 36.

Ports with the same signal name are internally connected.

4.1.1 Industrial Connector (Phoenix)

Connector pin assignment of the industrial model (connector type: see technical specifications on page 30)

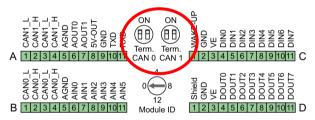

	Name	Use	More info
А			
1	CAN1_L		Connected to pin 3; at Single- wire CAN not connected
2	CAN1_H	CAN connection transceiver 1	Connected to pin 4
3	CAN1_L		Connected to pin 1; at Single- wire CAN not connected
4	CAN1_H		Connected to pin 2
5	AGND	Ground analog, reference for AOUT and AIN	
6	AOUT0	Analog Output	Only source
7	AOUT1	0 - 10 V, 20 mA, 10 bit	
8	5V-OUT	5 V, 500 mA	
9	GND	Ground, reference for digital and power supply	
10	TXD	- RS-232	
11	RXD	110-232	
В			
1	CAN0_L		Connected to pin 3; at Single- wire CAN not connected
2	CAN0_H	CAN connection transceiver 0	Connected to pin 4
3	CAN0_L		Connected to pin 1; at Single- wire CAN not connected
4	CAN0_H		Connected to pin 2
5	AGND	Ground analog, reference for AOUT and AIN	
6	AIN0		
7	AIN1	1	
8	AIN2	– Analog input 0 - 10 V	13.6 kΩ input impedance
9	AIN3		
10	AIN4		
11	AIN5		

	Name	Use	More info	
С				
1	WAKE-UP	Digital input for wake-up signal	High (> 4.0 V) = module on	
2	GND	Ground, reference for digital and power supply		
3	VE	Power supply 9 - 27 V DC		
4	DIN0		High > 4.0 V, Low < 3.0 V	
5	DIN1	Digital input, optional	5 - 10,000 Hz Pull-up/Pull-down:	
6	DIN2	determination of frequencies	up to ser. no. 99 by jumpers	
7	DIN3	and duty cycles	on the board (on request),	
8	DIN4		from ser. no. 100 by configuration	
9	DIN5	Digital input (static status	Max. processible switch frequency < 500 Hz	
10	DIN6	Digital input (static status detection)		
11	DIN7			
D				
1	Shield	Shield		
2	GND	Ground, reference for digital and power supply		
3	VE	Power supply 9 - 27 V DC		
4	DOUT0	Digital output, high-side driver	Optional FOUT/PWM OUT	
5	DOUT1	5 A short circuit	with maximum frequency	
6	DOUT2			
7	DOUT3	1	Useable as high-side, low-	
8	DOUT4	Digital output 0.6 A each	side, or push-pull driver (by configuration)	
9	DOUT5	1.4 A together	Low-side: max. 30 V against	
10	DOUT6		GND	
11	DOUT7	1		

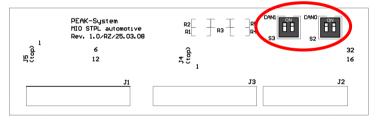
4.1.2 Automotive Connector (Tyco)

Connector pin assignment of the automotive model (connector types: see technical specifications on page 30)

	Name	Use	More info	
А				
1	VE	Power supply 12 V DC	KL30	
2			N200	
17	GND	Ground, reference for digital	KL31	
18		and power supply		
3	WAKE-UP	Digital input for wake-up signal	High (> 4.0 V) = module on	
19	5V-OUT	5 V, 500 mA		
4	AGND	Ground analog, reference for AOUT and AIN		
20	P0	Reserved		
5	AOUT0	Analog Output	Only source	
21	AOUT1	0 - 10 V, 20 mA, 10 bit		
6	AIN0		Pull-down circuit 12 kΩ,	
22	AIN1	-	optional pull-up circuit to 5V- OUT	
7	AIN2	Analog input 0 - 10 V		
23	AIN3		Pull-down circuit 12 k Ω	
8	AIN4			
24	AIN5			
9	DIN0		High > 4.0 V, Low < 3.0 V	
25	DIN1	Digital input, optional	5 - 10,000 Hz Pull-up/Pull-down:	
10	DIN2	determination of frequencies	up to ser. no. 99 by jumpers	
26	DIN3	and duty cycles	on the board (on request),	
11	DIN4		from ser. no. 100 by config	



	Name	Use	More info	
27	DIN5			
12	DIN6	Digital input (static status detection)	Max. processible switch frequency < 500 Hz	
28	DIN7		. ,	
13	CAN0_H		Connected to pin 15	
14	CAN0_L	- CAN connection transceiver 0	Connected to pin 16; at Single-wire CAN not connected	
15	CAN0_H		Connected to pin 13	
16	CAN0_L	-	Connected to pin 14; at Single-wire CAN not connected	
29	CAN1_H		Connected to pin 31	
30	CAN1_L	CAN connection transceiver 1	Connected to pin 32; at Single-wire CAN not connected	
31	CAN1_H		Connected to pin 29	
32	CAN1_L	-	Connected to pin 30; at Single-wire CAN not connected	
В				
1	DOUT0	Digital output, high-side driver	Optional FOUT/PWM OUT	
7	DOUT1	5 A short circuit	with maximum frequency	
2	DOUT2			
8	DOUT3]	Useable as high-side, low-	
3	DOUT4	Digital output 0.6 A each	side, or push-pull driver (by configuration)	
9	DOUT5	1.4 A together	Low-side: max. 30 V against	
4	DOUT6	-	GND	
10	DOUT7			
5	GND	Ground, reference for digital	KL31	
6		and power supply		
11	RxD	RS-232		
12	TxD			

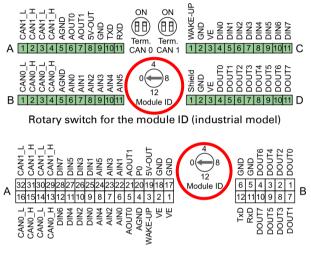


4.2 CAN Bus Termination (Switch)

Depending on the used CAN transceiver module you can activate or change a CAN bus termination with the corresponding switch blocks. Switches 1 and 2 on a switch block always must have the same position. By default the switches are in OFF position (lower position according to the orientation of the figure). The assignment of switch block to CAN channel is visible from the respective labeling (CAN channels CAN0 and CAN1).

Switch blocks for the CAN bus termination (industrial model)

Switch blocks for the CAN bus termination (automotive model), rear side of the connector board when the PCAN-MIO housing is open


Type of transceiver	Termination at switch position*	
	OFF (standard)	ON
High-speed CAN (ISO 11898-2)	none	120 Ω between CAN_L and CAN_H
Low-speed CAN (ISO 11898-3)	4.7 k Ω for CAN_L and CAN_H	1.1 k Ω for CAN_L and CAN_H
Single-wire CAN (SAE J2411)	9.1 k Ω for CAN_SW	2.1 k Ω for CAN_SW

* Both switches of a switch block

4.3 Module ID (Rotary Switch)

The rotary switch has 16 rest positions to determine the module ID (0 - F hex = 0 - 15). The position for ID 0 is to the left. The model IDs increase in a clockwise direction.

Rotary switch for the module ID (automotive model), remove cover plug if present

When the PCAN-MIO module is started the **configuration** with the number from the internal memory is loaded which matches the specified module ID (from ser. no. 100 excluding module ID 15). In addition, with the module ID there is a unique **identification** of the PCAN-MIO module during the PPCAN communication (configuration transfer). For the transmission of CAN messages in normal operation this module ID is not relevant.

From serial number 100 the **module ID 15** is reserved for the case of a firmware update failure so that there's still a possibility to access the PCAN-MIO module. At this setting a CAN bootloader is ready after a module reset. See also the separate documentation for a firmware update via CAN (on request).

This is how you change the module ID of a PCAN-MIO module:

- 1. Change the position of the rotary switch with a small slot screwdriver.
- 2. Restart the module by briefly cutting off the power supply.

After the restart the changed module ID will be active. Before the restart changes made at the rotary switch will have no influence on operation.

Tip: If the communication with the PCAN-MIO module is prevented because you do not know the bit rates used by the CAN channels, you can set the module ID to a position without configuration. In this case the respective standard bit rate is active for each equipped CAN transceiver (see following chapter 5 on page 28).

4.4 Status LED

The status LED being located on the lower right of the front panel indicates the current operation status of the PCAN-MIO module by different colors and blinking frequencies.


Color	Blinking frequency	Operational status of the module
Red	Briefly on	Initialization of the module (power-on self test, POST)
	Permanently on	Hardware defect
Green	1 Hz (slow)	Normal operation with the configuration which is allocated to the currently specified module ID
	2 Hz (fast)	No or no valid configuration available for the currently specified module ID

5 Alternative CAN Transceiver Modules

The PCAN-MIO basic module comes equipped with High-speed CAN transceivers (from ser. no. 100 with wake-up function). On request, we can provide each CAN channel also with an alternative CAN transceiver module.

The PCAN-MIO module automatically detects the CAN transceiver module in use and provides the according transfer parameters.

PCAN-MIO circuit board with plug-on transceiver modules

Module name	Transmission standard	Special function	Default bit rate
CAN-HS	High-speed CAN ISO 11898-2		500 kbit/s
CAN-HS opto	High-speed CAN ISO 11898-2	Galvanic isolation up to 300 V for the CAN interface	500 kbit/s
CAN-HS-1041 (standard)	High-speed CAN ISO 11898-2	Wake-up	500 kbit/s
CAN-LS	Low-speed CAN ISO 11898-3	Wake-up	125 kbit/s
CAN-LS-SW	Single-wire CAN SAE J2411	Wake-up	33.3 kbit/s

6 Technical Specifications

Power supply	
Supply voltage	9 - 27 V DC
rownout check	Reset if internal 5-Volt supply < 4.35 V
urrent consumption	60 mA typ. (without separate circuits) 100 μA in power-down mode
verse-polarity protection	Yes
ensor power supply	5 V (max2 %), 500 mA

Connector types

Spring terminal block 11-pin (for IPEH-002187) Phoenix Contact FMC 1,5/11-ST-3,5 - 1		FMC 1,5/11-ST-3,5 - 1952351
Automotive connector 12-pin (for IPEH-002187-A)		TE Connectivity 929051-1 TE Connectivity 968473-1 TE Connectivity 928999-1
Automotive connector 32-pin (for IPEH-002187-A)		TE Connectivity 929053-1 TE Connectivity 968265-1 TE Connectivity 928999-1

Digital outputs	
Count	8, 2 of them PWM-capable (DOUT0 and DOUT1)
Voltage proof	DOUT2 - DOUT7: Low-side 30 V
Constant current	DOUT0 - DOUT1: High-side 1.4 A DOUT2 - DOUT7: High-/Low-side 0.6 A per output (1.4 A together)
Short-circuit current	DOUT0 - DOUT1: 5 A DOUT2 - DOUT7: 1 A
Range of frequency generation	DOUT0 - DOUT1: up to ser. no. 99: 65 - 6000 Hz from ser. no. 100: 17 - 6000 Hz

Analog outputs	
Count	2
Voltage	0 - 10 V, each 20 mA (for internal reference voltage), other voltage range on request
Resolution	10 bit

Digital inputs		
Count	8	
Switching thresholds	$ON \ge 4 V$, $OFF \le 3 V$	
Frequency range DIN0 - DIN4	5 - 10,000 Hz	
Integration time constant	23 µs	
Maximum input voltage	30 V	

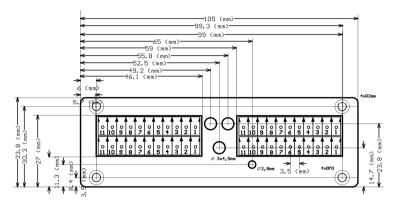
Analog inputs

Count	6
Measuring range	0 - 10 V, other measuring range on request
Resolution	10 bit
Sample rate	1 kHz
Input impedance	13.6 kΩ
Integration time constant	1.6 ms
Maximum input voltage	30 V

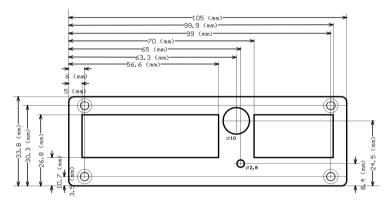
CAN

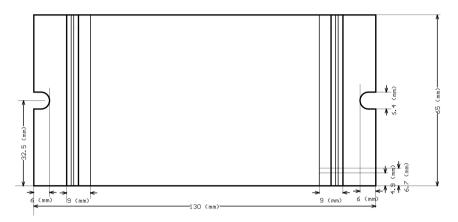
CAN				
Standard transceiver	Up to ser. no. 9 High-speed C From ser. no. 1 High-speed C function (TJA	CAN ISO 11 00: CAN ISO 11		
Other transceivers (on request)	High-speed CA without or wi Low-speed CA with wake-up Single-wire CA with wake-up	ith galvani N ISO 1189 o function N SAE J24	c isolation 98-3 (TJA10	55)
Wake-up time	typically 200 m (depending c		of the config	guration)
Termination	Setup with swi	tches on tl	ne board	
	CAN	OFF	ON	
	High-speed	none	120 Ω	
	Low-speed	4.7 kΩ	1.1 kΩ	
	Single-wire	9.1 kΩ	2.1 kΩ	
CAN ID reserved for configuration transfer	7E7h	-		

Interference resistance	
Tests	IEC 61000 and DIN EN 61326 compliant
Peculiarity surge	±500 V
Environment	
Operating temperature	-40 - +85 °C (-40 - +185 °F)
Temperature for storage and transport	-40 - +100 °C (-40 - +212 °F)
Relative humidity	15 - 90 %, not condensing
Ingress protection (IEC 60529)	IP20
Measures	
Size	130 x 65 x 35 mm (without connectors) See also dimension drawings in Appendix B on page 34
Weight	max. 280 g
Conformity	
EMV	Directive 2014/30/EU DIN EN 61326-1:2013-07
RoHS 2	Directive 2011/65/EU DIN EN 50581 VDE 0042-12:2013-02



Appendix A CE Certificate




Appendix B Dimension Drawings

Front of the industrial model

Front of the automotive model

PEAK

System

Top view of the bottom plate

The figures do not show the original size.

Appendix C Module Resources

The table lists all the logical resources of the PCAN-MIO module, arranged by I/O functions (column "I/O Function") and the respective I/O numbers (column "I/O Number").

I/O Function	I/O Number	Value range	Connection	Function	
DOut Level (00h)	·		·		
	DO H0		D4	High-side output 0	1.4 A
	DO H1		D5	High-side output 1	1.4 A
	DO H2		D6	High-side output 2	
	DO H3	0: open, 1: High	D7	High-side output 3	
	DO H4	0. open, 1. mgn	D8	High-side output 4	0.6 A (1.4 A together)
	DO H5		D9	High-side output 5	
	DO H6		D10	High-side output 6	
	DO H7		D11	High-side output 7	
	DO HL2		D6	Push-pull output 2	
	DO HL3		D7	Push-pull output 3	
	DO HL4	0: Low, 1: High	D8	Push-pull output 4	0.6 A (1.4 A together)
	DO HL5	0. Low, 1. High	D9	Push-pull output 5	
	DO HL6		D10	Push-pull output 6	
	DO HL7		D11	Push-pull output 7	
	DO L2		D6	Low-side output 2	
	DO L3		D7	Low-side output 3	
	DO L4	0: open, 1: Low	D8	Low-side output 4	0.6 A (1.4 A together)
	DO L5	0. open, 1. Low	D9	Low-side output 5	
	DO L6		D10	Low-side output 6	
	DO L7		D11	Low-side output 7	
DOut Frequency	(01h)				
	E		D4	F	• ···· • · · · · • •

Freq 0	Up to ser. no. 99: 65 - 6000	D4	Frequency output 0	Generates a variable frequency signal with a configurable
Freq 1	From ser. no. 100: 17 - 6000	D5	Frequency output 1	duty cycle (indication in Hz)

I/O Function	I/O Number	Value range	Connection	Function		
DOut Ratio (03h)		·		·		
	PWM 0	0 - 255 (255 = 100 %)	D4	PWM output 0	Generates a PWM signal v	vith variable duty cycle and
	PWM 1	0 - 255 (255 = 100 %)	D5	PWM output 1	configurable frequency	
AOut Level (10h)		·		·		
	AOut 0	a 4000 (4000 40 M)	A6	Analog output 0		
	AOut 1	0 - 1023 (1023 = 10 V)	A7	Analog output 1	10-bit D/A converter, la = 2	20 mA
Special Out (70h)	1	1	I			
	Supply 5V	0: Off, 1: On	A8	5-Volt supply for external sensor la = 500 mA		
	Selfhold	0: Off, 1: On		1 at power-on. To switch off the module	e set to 0.	
	RS-232	0: Off, 1: On		1 at power-on. Switches the High stage for analog in-/outputs, the RS-232 level		tal inputs, the reference voltag
	LED Pattern			(Reserved)		
	CAN 0 Mode		CAN_L: B1, B3 CAN_H: B2, B4 SW-CAN: B2, B4	Operation mode CAN transceiver 0	0: Normal (all transceivers 1: WakeUp (AU5790) 2: PowerDown (AU7590, F	.) CA82C251, TJA1041, TJA1055)
	CAN 1 Mode	- 0 - 5	CAN-L: A1, A3 CAN-H: A2, A4 SW-CAN: A2, A4		3: ListenOnly (PCA82C251 4: HighSpeed (AU5790) 5: Standby (PCA82C251, T	, TJA1041, TJA1055)
	Routing 0 to 1 All		3W-CAN. A2, A4		from bus 0 to bus 1	Not to be combined with
	Routing 1 to 0 All	0: Off, 1: On		Forwarding of all CAN messages	from bus 1 to bus 0	Explicit or Excluding
	Debug Mode			(Reserved)		
	Routing 0 to 1 Explicit	11-bit CAN ID,			from bus 0 to bus 1	Not to be combined with All
	Routing 1 to 0 Explicit	29-bit CAN ID		Forward the specified 11-bit CAN ID	from bus 1 to bus 0	or Excluding
	Routing 0 to 1 Excluding	11-bit CAN ID,		Forwarding of all CAN messages excep	t from bus 0 to bus 1	Not to be combined with All
	Routing 1 to 0 Excluding	29-bit CAN ID		the specified 11-bit CAN ID	from bus 1 to bus 0	or Explicit
	CAN 0 Bitrate Raw	0x0000 - 0xFFFF		Set the CAN baud rate by direct insertic	on of the register value into	the baud rate register
	CAN 1 Bitrate Raw					
	CAN Bitrate: 33.3 kbit/s	0, 1 (CAN channel)		Specify a CAN baud rate		
	CAN Bitrate: 47.6 kbit/s					
	CAN Bitrate: 50 kbit/s	_				
	CAN Bitrate: 83.3 kbit/s					

I/O Function	I/O Number	Value range	Connection	Function	
	CAN Bitrate: 95.2 kbit/s				
	CAN Bitrate: 100 kbit/s				
	CAN Bitrate: 125 kbit/s				
	CAN Bitrate: 250 kbit/s				
	CAN Bitrate: 500 kbit/s				
	CAN Bitrate: 1 Mbit/s				
Din Level (80h)				·	
	Level 0		C4	Digital input 0	
	Level 1		C5	Digital input 1	
	Level 2		C6	Digital input 2	
	Level 3	0: Low	C7	Digital input 3	Vih = 4 V
	Level 4	1: High	C8	Digital input 4	Vil = 3 V
	Level 5	_	C9	Digital input 5	
	Level 6	_	C10	Digital input 6	
	Level 7	_	C11	Digital input 7	
Din Frequency (8	1h)			·	
	Freq 0		C4	Frequency input 0	
	Freq 1		C5	Frequency input 1	Frequency measurement
	Freq 2	5 - 10000 (Hz)	C6	Frequency input 2	Vih = 4 V
	Freq 3		C7	Frequency input 3	Vil = 3 V
	Freq 4		C8	Frequency input 4	

DIn Ratio (83h)

Ratio 0		C4	PWM input 0	
Ratio 1		C5	PWM input 1	Measurement of the duty cycle (high phase)
Ratio 2	0 - 1000 (1000 = 100 % High)	C6	PWM input 2	Vih = 4 V Vil = 3 V
Ratio 3		C7	PWM input 3	(only to 1 kHz)
Ratio 4		C8	PWM input 4	

I/O Function	I/O Number	Value range	Connection	Function		
Din Low Frequen	cy (86h)					
	Low Freq 0		C4	Digital input 0		
	Low Freq 1		C5	Digital input 1		of low frequencies (0.001 - 50 Hz)
	Low Freq 2	1 - 50000 (0.001 Hz)	C6	Digital input 2	Vih = 4 V Vil = 3 V	
	Low Freq 3		C7	Digital input 3	-	n second, calculation each 10 milliseconds
	Low Freq 4		C8	Digital input 4		
Din Duty Cycle (8	:7h)	· ·				
	Duty Cycle 0		C4	Digital input 0		
	Duty Cycle 1		C5	Digital input 1		of the duty cycle (0 to 1000 ‰) from 0.001 to 50 Hz
	Duty Cycle 2	1 - 1000 (‰)	C6	Digital input 2	Vih = 4 V	
	Duty Cycle 3		C7	Digital input 3	Vil = 3 V	accord eclaulation each 10 milliocoorde
	Duty Cycle 4		C8	Digital input 4	- Sampling each	n second, calculation each 10 milliseconds
Pull-Up/Down (8	8h)					
	Pull-Up 0; 1-3; 4; 5-7	0: deactivated	C4C11	Pull-up resistor for digital input o group	or digital input	Pull-up/pull-down resistors each 4.7 kΩ. This I/O function is only available in the
	Pull-Dn 0; 1-3; 4; 5-7	1: activated	C4C11	Pull-down resistor for digital inpu input group	ut or digital	hardware profile "PCAN-MIO (32-Bit)" (from ser. no. 100).
Aln Level (90h)						
	Aln 0		B6	Analog input 0		
	Aln 1		B7	Analog input 1	-	
	Aln 2	0 - 1023	B8	Analog input 2	Input range: 0	- 10 V
	Aln 3	0 - 1023	B9	Analog input 3	Hardware low	-pass: 6.8 kΩ, 33 nF
	Aln 4		B10	Analog input 4		
	Aln 5		B11	Analog input 5		
Tau (98h)						
	Tau 0			Time constant for analog input 0		
	Tau 1			Time constant for analog input 1		_
	Tau 2	0, 60000 (====)		Time constant for analog input 2		
	Tau 3	— 0 - 60000 (ms)		Time constant for analog input 3		 Software low-pass for analog inputs
	Tau 4			Time constant for analog input 4		_
	Tau 5			Time constant for analog input 5		—

I/O Function	I/O Number	Value range	Connection	Function	
Const (CCh)					
	(See list in the PPCAN- Editor)	(Diverse values)		Diverse constants Read only; can be used as input co	onstants.
Positive Const (C	Dh)				
	0 to 255	(0 to +255)		Positive constants Read only; can be used as input co	onstants.
Negative Const (CEh)				
	0 to -255	(0 to -255)		Negative constants Read only; can be used as input co	onstants.
Special In (F0h)					
	Conf Ver Main	0 - 255		Main version number of the configuration	Version of the configuration; can be specified in the PPCAN-
	Conf Ver Sub	0 - 255		Secondary version number of the configuration	Editor during the module-specific settings
	FW Ver Main	0 - 7		Main version number of the firmware	
	FW Ver Sub	0 - 31		Secondary version number of the firmware	For information purposes; read only
	FW Build	0 - 255		Build version number of the firmware	-
	Module ID	0 - 15		Module ID Position of the corresponding rota the CAN net.	ry switch on the PCAN-MIO module; ID must be unique within
	Main Cycle Counter			Count of computation cycles of the	e firmware since the last call; read only
	Main Cycle Time Max	0 - 65535		Maximum duration in ms for a con	nputation cycle since the last call; read only
	Main Cycle Time Avg			Average duration in µs for a comp	utation cycle since the last call; read only
	none			No function Can be used as place-holder if the	corresponding input or output has no function.

32bit Variable (FFh)

0 to 255	22 Pit signed	Internal 32-bit variable	
0 10 255	32 Bit signed	Temporary memory for values of function blocks and CAN variables	