

Universal Controller for
CAN Applications

PCAN-MIO

Configuration Tutorial

Document version 1.2.0 (2017-11-24)

PCAN-MIO – Configuration Tutorial

2

Relevant products

Product Name Model Part Number

PCAN-MIO Industrial plug connector (Phoenix)
Automotive plug connector (Tyco)

IPEH-002187
IPEH-002187-A

PCAN-Explorer 5 IPES-005028

PPCAN-Editor 2, PCAN-
View, PEAK-Converter

PCAN is a registered Trademark of PEAK-System Technik GmbH.
Other product names in this document may be the trademarks or registered trade-
marks of their respective companies. They are not explicitly marked by “™” or “®”.

© 2017 PEAK-System Technik GmbH
Duplication (copying, printing, or other forms) and the electronic distribution of this
document is only allowed with explicit permission of PEAK-System Technik GmbH.
PEAK-System Technik GmbH reserves the right to change technical data without
prior announcement. The general business conditions and the regulations of the
license agreement apply. All rights are reserved.

PEAK-System Technik GmbH
Otto-Roehm-Straße 69
64293 Darmstadt
Germany

Phone: +49 (0)6151 8173-20
Fax: +49 (0)6151 8173-29

www.peak-system.com
info@peak-system.com

Document version 1.2.0 (2017-11-24)

https://www.peak-system.com/�
mailto:info@peak-system.com�

PCAN-MIO – Configuration Tutorial

3

Contents

1 Introduction 5
1.1 Prerequisites for Operation 5

2 The Configuration Concept 7
2.1 Possibilities of Configuration 7
2.2 Scaling 8
2.3 CAN Gateway Services 8
2.4 Default Values 8
2.5 Function Blocks 9
2.6 Event-triggered Transmission of CAN Messages 9
2.7 Characteristic Curves 9

3 List of Exercises 10

4 Solutions Explained Stepwise 12
4.1 Exercise 1a: Forwarding of all Messages from

CAN-0 to CAN-1 (Gateway) 12
4.2 Exercise 1b: Definition of CAN Messages 16
4.3 Exercise 1c: Routing the Defined Messages

from CAN-0 to CAN-1 19
4.4 Exercise 1d: Combination 1a and 1c 24
4.5 Exercise 1e: Cyclic Transmission of a Message

on CAN-1 with Signals from CAN-0 26
4.6 Exercise 1f: Scale and Offset 28
4.7 Exercise 1g: Exporting a Symbol File 30
4.8 Exercise 1h: Creating a Simple Instrument

Panel 32
4.9 Exercise 2a: Reading Digital Input State and

Transmitting this in a CAN Message 36
4.10 Exercise 2b: Setting Digital Output State

According to a Received CAN Message 38

PCAN-MIO – Configuration Tutorial

4

4.11 Exercise 2c: Reading Analog Input State and
Transmitting this in a CAN Message 40

4.12 Exercise 2d: Setting of Analog Outputs
According to a Received CAN Message 42

4.13 Exercise 2e: Switching the 5 V Output 43
4.14 Exercise 3a: Manipulating a CAN Signal using

Function Block Characteristic Curve 44
4.15 Exercise 3b: Threshold with Hysteresis 50
4.16 Exercise 3c: Transmission only on Signal

Changes 53
4.17 Exercise 4a: Setting the CAN Bit Rate

(Default Value) 56
4.18 Exercise 5a: Reading the Module ID

(Diagnostics) 57
4.19 Exercise 5b: Reading the Firmware Version

(Diagnostics) 59
4.20 Exercise 6: CAN Messages on Request 61
4.21 Exercise 7: Sleep Mode (Energy Saving) 62
4.22 Exercise 8a: Transmitting a Multiplexer

Message Automatically 67
4.23 Exercise 8b: Transmitting a Multiplexer

Message on Request 70
4.24 Exercise 9: Bonus Exercises 72

PCAN-MIO – Configuration Tutorial

5

1 Introduction

Working successfully with the PPCAN-Editor requires at least some
basic understanding by the user regarding hardware knowledge
and programming experience.

This tutorial therefore addresses owners of a PCAN-MIO who are
trying to do some more complex configurations of the device, using
their skills from electronics and informatics education.

At first, you should try to get familiar with the free PPCAN-Editor
following the steps of this tutorial. When experiencing more and
more difficulties with understanding the matter and proceedings,
this may at least serve as an indication for the future use of the
PPCAN-Editor: when deciding against the effort, PEAK System
offers a configuration service subject to detailed specifications.

1.1 Prerequisites for Operation

For reasonably processing this tutorial and for solving the exercises,
a PCAN-MIO (with sufficient power supply) should be at hand. Its
CAN busses should be connected to a computer via PEAK interfaces
and also should be terminated properly, e.g. using the internal DIP
switches (see PCAN-MIO hardware manual for this).

 Two CAN busses are connected to the PC via PEAK interfaces,
with 500 kbit/s each

 The PPCAN-Editor software is installed

 As a remote CAN participant, e.g. a PCAN-View (or even better:
a PCAN-Explorer part no. IPES-005028) is installed on the PC.
Access the interfaces with the mentioned software, thus
connecting with one CAN bus each

PCAN-MIO – Configuration Tutorial

6

The device PCAN-MIO offers the following resources for
configuration:

 Device ID (4 bit, 0…15 dec) may be adjusted from outside using
a rotary switch

 2 High-speed CAN channels via pluggable transceiver modules.
Alternatively, low speed, single wire, and opto-decoupled high
speed modules, as well as high-speed modules without wake-up
function available

 CAN bit rates1 (10k; 20k; 33,3k; 47,6k; 50k; 83,3k; 95,2k; 100k;
125k; 250k; 500k; 1M)

 CAN messages (11-bit and 29-bit)

 1 RS-232 connector (currently works only by using a special
firmware)

 1 output 5 V/200 mA

 8 digital inputs with switchable pull-ups (low active) or
pull-downs (high active)

 8 digital outputs, 6 of these switchable as low-side, high-side or
push-pull, 2 of these with PWM capability (only high-side)

 6 analog inputs (10 bit, 0 - 10 V)

 2 analog outputs (10 bit, 0 - 10 V)

 Wake-up function using separate input

1 Bit rates may be adjusted freely, but actual function is depending on equipped

transceiver types

PCAN-MIO – Configuration Tutorial

7

2 The Configuration Concept

Most of the microcontroller-equipped devices from PEAK-System
offer possibilities to link any of their internally accessible resources
with each other. For this, the firmware allows virtual wiring of the
hardware resources by several means, e.g. so called Function
Blocks, among others. For creating, editing, and managing
configurations, PEAK-System offers the PPCAN-Editor for free
download from their website.

Files created this way along with the enclosed configuration are
stored to the PC at first, then transferred via CAN to the PCAN
device (upload) and stored there non-volatile. Some devices can
hold several configurations: the active one is then determined by
means of a selector switch.

Project files created with the PPCAN-Editor may contain several
configurations. The device ID selects the one to be executed when
the device starts. This offers the possibility to wire several devices
with different IDs to the same CAN bus and to upload the same
multi-configuration file to them all. The different ID of each device
will let them load their individual configuration from the nonvolatile
memory and therefore executes a different task each.

2.1 Possibilities of Configuration

Linking of internal resources can be done using straight
assignment, the simple scaling of values, as well as applying
methods "CAN gateway services", "Default values", "Function
blocks", "Event based messaging", "Time events", and
"Characteristic curves". Devices with only one CAN bus do not
support the "Gateway services", and "Time events" may also be
missing on some of the smaller platforms. All available resources of
a device are reported to the PPCAN-Editor by applying a special file

PCAN-MIO – Configuration Tutorial

8

related to that hardware. This so called "hardware profile" lets the
PPCAN-Editor allow or restrict configuration possibilities
correspondingly. The user instead may refer to the hardware
manual of a specific device (see www.peak-system.com for free
manual download).

2.2 Scaling

The most elementary means of manipulating values is using the
four basic arithmetics. They are controlled with parameters SCALE
and OFFSET, taken from mathematics well known linear equation.
Here, the parameter SCALE decides on multiplication (if > 1)
respectively division (if < 1), whereas parameter OFFSET is
responsible for addition (if > 0, positive) respectively subtraction (if
< 0, negative). As a neutral setting, SCALE = 1 and OFFSET = 0 are
preset by default.

2.3 CAN Gateway Services

Incoming messages on one CAN bus may be (selectively) forwarded
to a different CAN bus. Or they may be transmitted on the same
CAN bus but with a different ID (e.g. conversion 11-bit <-> 29-bit). Or
an incoming message may be used to trigger transmission of a
completely different message.

2.4 Default Values

When defining parameter values here, the module's resources may
be preset from the start. For example, a non-default bit rate of a
CAN bus may be set here, activation of a 5 V supply output for
sensors, LEDs, and ports may be switched logically, etc.

http://www.peak-system.com/�

PCAN-MIO – Configuration Tutorial

9

2.5 Function Blocks

In the case that simple manipulation of values using SCALE and
OFFSET turned out to be insufficient, the firmware offers so called
function blocks with even more complex capabilities. Such
functions are e.g. value mapping with X/Y tables or matrices,
hysteresis functions, delays, counters, timers, low pass filters, a
comprehensive collection of mathematical and logical functions up
to a complex PIDT1 closed-loop control. Function blocks are
processed sequentially or conditionally.

2.6 Event-triggered Transmission of CAN
Messages

For CAN messages to be transmitted conditionally, a pool of trigger
conditions is available. Also CAN messages can be requested from
distant nodes (RTR mechanism supported).

2.7 Characteristic Curves

An incoming X value results in the output of the assigned Y value.
Here, 2 to 31 X/Y translation pairs may be defined. X values in
between two X/Y pairs will return a Y value linear interpolated from
the available Y points. In other words: characteristic curves allow
value manipulation in a way like up to 31 different SCALE and
OFFSET values would do. Using this, segments of the curve may be
influenced in their gradient to define plateaus or discontinuous
functions.

PCAN-MIO – Configuration Tutorial

10

3 List of Exercises

An overview on the manifold capabilities of the PCAN hardware
(like the PCAN-MIO) may be given when solving the following
exercises. For further literature references see appendix A.

 1a) Forwarding of all messages from CAN-0 to CAN-1 (Gateway)

 1b) Definition of CAN messages

 1c) Routing the defined messages from CAN-0 to CAN-1

 1d) Combination 1a and 1c

 1e) Cyclic transmission of a message on CAN-1 with signals
from CAN-0

 1f) Scale und Offset

 1g) Exporting a symbol file

 1h) Creating a simple instrument panel

 2a) Reading digital inputs and transmission with a CAN message

 2b) Setting of digital outputs according to a received CAN
message

 2c) Reading analog inputs and transmission with a CAN
message

 2d) Setting of analog outputs according to a received CAN
message

 2e) Switching the 5 V output

 3a) Manipulating a CAN signal using the Characteristic Curve
function block

 3b) Threshold with hysteresis

 3c) Transmission only on signal changes

 4a) Setting the CAN bit rate (default value)

PCAN-MIO – Configuration Tutorial

11

 5a) Reading the module ID (diagnostics)

 5b) Reading the firmware version (diagnostics)

 6) CAN messages on request

 7) Sleep mode (energy saving)

 8a) Transmitting a Multiplexer Message Automatically

 8b) Transmitting a Multiplexer Message on Request

 9) Bonus exercises

PCAN-MIO – Configuration Tutorial

12

4 Solutions Explained
Stepwise

You may find further information on use of the PPCAN-Editor in the
online help: to be opened from the program's help menu or by
pressing the F1 key.

4.1 Exercise 1a: Forwarding of all
Messages from CAN-0 to CAN-1 (Gateway)

1. Start the PPCAN-Editor and proceed as follows.

2. Assign the PPCAN-Editor to a PEAK-Interface, e.g. PCAN-
USB. Select the menu item CAN > Connect and from there
the appropriate CAN interface or CAN network.

The selected connection is displayed in the status bar of the
PPCAN-Editor (bottom left corner).

3. Check whether the PCAN-MIO can be found on the CAN
network by selecting the menu item Transmit > Detect
Modules.

The Active Modules window lists the available devices (here
PCAN-MIO) along with some status information.

PCAN-MIO – Configuration Tutorial

13

The “Module No” column shows the currently active device ID, 0 in this case. The
“Version” column indicates the firmware version.

4. Create a new empty configuration file using the menu item
File > New.

5. For creating a new device configuration within the configu-
ration file select the menu item Edit > New Configuration.

PPCAN-Editor asks for the type of hardware to be config-
ured. PPCAN-Editor can configure several different PCAN
devices, equipped with individual resources each. There-
fore, for each type of device a list of available resources is
supplied by the manufacturer.

6. Select the profile for the PCAN-MIO and confirm with Ok.

PCAN-MIO – Configuration Tutorial

14

Note: From serial number 100 onward, PCAN-MIO's work with
a different configuration structure. Therefore, when creating a
new configuration within the PPCAN-Editor, one must select
the appropriate hardware profile: either “PCAN-MIO“ up to
serial number 99, or “PCAN-MIO (32-Bit)“ from serial number
100 onward.

New I/O functions which are only available in the hardware
profile “$1B PCAN-MIO (32-Bit)” cannot be copied to
configurations based on the profile “$14 PCAN-MIO “.

Besides the General tab, a new tab has been created,
entitled with the configuration's name Config0 I/O. Also the
navigator (at the left window edge) now contains an addi-
tional icon named Config0.

7. Double click on the Icon Config0 at the left window edge.

It opens a new configuration window. Here more complex
linkages of resources can be made which go beyond the
simple assignment and scaling.

8. Select the Default values for data objects tab, open the
context menu (right click), and select Add Record.

The cell content can be edited by either pressing F2, or by a
slow double click, or by simply typing the new value.

PCAN-MIO – Configuration Tutorial

15

9. In the table row enter the following values:

 I/O Function: 70h SpecialOut (a virtual module resource)

 I/O No: Routing 0 to 1 All

 Default value: 3 (1=11-bit IDs, 2=29-bit IDs, 3=both types)

 Information: description of what this line does

In this case all incoming messages on CAN-0 are forwarded
1:1 to CAN-1. For example, a control unit in the crash area of
a vehicle receives the same information, but cannot block
the rest of the bus in case of damage.

10. Save the configuration project file (*.ppproj) as Exercise 1a
to your PC. To do so, select the menu item File > Save As.

11. The configuration must be transmitted to the PCAN-MIO via
CAN bus (Upload). For this, select the menu item Transmit >
Send Configuration or click the corresponding icon on the
toolbar.

PCAN-MIO – Configuration Tutorial

16

Important Note: Ensure that the list box in the toolbar shows
the name of your configuration Config0.

While uploading, the Output window of the PPCAN-Editor shows
several progress messages.

The status LED of the PCAN-MIO flashes during the transmission
and processing of the configuration file. When the status LED
flashes red once, the configuration was processed and an automatic
device reset was performed. Thereafter, the status LED blinks slowly
green at 1 Hz thus indicating that the PCAN-MIO executes its new
configuration.

4.2 Exercise 1b: Definition of CAN
Messages

Create a new empty configuration file.

1. Select the menu item File > New.

An empty window appears where global CAN objects can
be defined. If a file contains multiple configurations with
different CAN objects, they all must be defined here. Later,
they are imported selectively into the different configura-
tions.

In that window a new CAN bus is already created as Bus_0,
underneath which global CAN objects can be created
hierarchically.

2. Double click the name Bus_0 and enter the new name for it.
Select the default bit rate 500 kbit/s from the dropdown list
(The choice is informative only and has no effect).

PCAN-MIO – Configuration Tutorial

17

 Bus name: MIO_CAN-0

 Bit rate: 500 kbit/s

 Information: description of what this line does

In order to be able to route, you will also need the second
CAN bus of the PCAN-MIO.

3. Open the context menu of the window (by right click on the
white background area) and select Add new Bus.

4. Double click the name Bus_0 and enter the new name for it.
Select the default bit rate 500 kbit/s from the dropdown list
(The choice is informative only and has no effect).

 Bus name: MIO_CAN-1

PCAN-MIO – Configuration Tutorial

18

 Bit rate: 500 kbit/s

 Information: description of what this line does

Create at least one message on each bus, each with at least
one signal.

5. In the context menu (right click) of each bus select Add new
Symbol (creates a new CAN message) and enter the
parameters into the messages:

 Symbol name: Source message and Target message

 CAN ID: 0x100 (11-bit ID) and 0x00000200 (29-bit ID)

 DLC: 8 (message has 8 data bytes)

 Extended: decide on 11-bit ID or 29-bit ID

 Enable: yes, both messages shall be used

 RTR: no, message shall be transmitted always, -not- only on
request

6. In the context menu (right click) of each CAN message select
Add new Variable (creates a new CAN signal) and enter the
parameters into the variables:

PCAN-MIO – Configuration Tutorial

19

 Variable name: Source message and Target message

 Unit: useful with physical quantities, for information only

 Bit length: 8 (both signal each 1 byte wide, value range 0..255)

 Start Byte: 0 (signal starts at the message's edge)

 Start Bit: 0

 Signed: no, can’t be negative

 Byte Order: Intel format (LSB in byte 0/bit 0,
MSB in byte 1/bit 7)

The empty body of both CAN messages is hereby defined, but not
yet assigned to physical data sources. Therefore, a configuration
must be created.

4.3 Exercise 1c: Routing the Defined
Messages from CAN-0 to CAN-1

Create a new configuration within the configuration file.

1. Select the menu item Edit > New Configuration.

PPCAN-Editor asks for the hardware to be configured.

2. Select the profile "$1B PCAN-MIO (32bit)" and confirm with
Ok.

PCAN-MIO – Configuration Tutorial

20

Besides the General tab, a new tab has been created entitled
with the configuration's name Config0 I/O. Also the naviga-
tor (at the left window edge) now contains an additional
icon named Config0.

The globally defined CAN busses, messages, and signals
should be used in this configuration. Therefore, they all
must be imported.

3. Click on the new Config0 I/O tab for bringing it into the
foreground. In the context menu (right click) select Add
defined Bus for each bus.

The previously defined global CAN busses along with the
contained messages and the 8-bit variables will be imported
into the configuration.

PCAN-MIO – Configuration Tutorial

21

4. The defined busses must get a number according to the
hardware's CAN channels.

 Channel No.: 0 and 1 (assign the hardware CAN channels)

5. Enter the parameters for the messages.

 Direction: Receive (message received from the bus) and
Transmit (message transmit to the bus)

 Enable: yes, message should be transmitted

 Period: 0 (only for target message: the message is not
transmitted cyclically)

PCAN-MIO – Configuration Tutorial

22

6. Enter the parameters for the signals.

 I/O Function: FFh 32bit Variable (the incoming source signal is
written into a 32-bit variable and read later on from there again)

 I/O Number: 0, using the 32-bit variable #0

 Scale: 1 (no scaling at all, like multiplying with 1)

 Offset: 0 (no shifting at all, like addition of 0)

 Enable: yes, this signal (within the message) should be used

Now the two messages must be transferred to the gateway
service, so that it converts from CAN-0 to CAN-1.

7. Double click to the Icon Config0 at the left window edge.

The new configuration window Config0 opens.

8. Select the Message gateway tab, open the context menu
(right click) and select Add Record.

PCAN-MIO – Configuration Tutorial

23

A table row appears that routes one CAN message. Enter
the parameters.

 Source Bus: MIO_CAN-0

 Source Message-ID: ID 0x100 (11-bit format)

 Destination Bus: MIO_CAN-1

 Destination Message-ID: ID 0x00000200 (29-bit format)

 Enable I/O Function: CCh (Const), this routing should always be
active

 Enable I/O Number: 1

 Mode: direct copy (transmit whenever something is received)

9. Save the configuration as exercise 1c to your PC.

10. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

PCAN-MIO – Configuration Tutorial

24

When transmitting a message with ID 0x100 on CAN-0 to the PCAN-
MIO, the contained data is forwarded in message ID 0x000000200
on CAN-1. Other messages are ignored.

4.4 Exercise 1d: Combination 1a and 1c

All messages should be forwarded from CAN-0 to CAN-1
unchanged, except ID 0x100. This one should still be translated
into ID 0x00000200.

1. Open exercise 1c and save as exercise 1d to your PC.

2. Double click to the Icon Config0 at the left window edge.

It opens the new configuration window Config0.

3. Select the Default values for data objects tab, open the
context menu (right click) and select Add Record.

PCAN-MIO – Configuration Tutorial

25

Routing anything from CAN-0 to CAN-1, except for the
specified ID.

 I/O Function: 70h Special Out

 I/O Number: Routing 0 to 1 excluding (routing all from CAN-0 to
CAN-1 except 0x100)

 Default Value: 256 (0x100, no routing of this ID. The parameter is
represented decimal)

Note: Routing functions explicit and excluding only support 11-
bit IDs. In this context, explicit means routing of only the
specified messages and excluding means routing of everything
except the specified messages.

4. Save the configuration as exercise 1d to your PC.

5. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

PCAN-MIO – Configuration Tutorial

26

When transmitting a message with ID ≠ 0x100 on CAN-0 to the
PCAN-MIO, it is copied exactly onto CAN-1.

When transmitting a message with ID = 0x100 on CAN-0 to the
PCAN-MIO, the contained data is transmitted in message ID
0x000000200 on CAN-1.

Note: This functionality is very useful if a new ECU shall be
inserted into an existing vehicle bus and this device requires
CAN signals in a different layout (new CAN database).
Furthermore the rest of the vehicle bus is copied transparently.

4.5 Exercise 1e: Cyclic Transmission of a
Message on CAN-1 with Signals from
CAN-0

By setting a transmission period for the message 0x00000200,
cyclic transmission of that ID takes place on CAN-1. The required
data are still taken from the 32-bit variable #0, which is filled by
CAN-0. On source message timeout, the last known content will
be repeated.

1. Open exercise 1c and save as exercise 1e to your PC.

2. Open the Config0 I/O tab and set a cycle time for the
transmit message.

PCAN-MIO – Configuration Tutorial

27

 Period: 250 ms (the message is now transmitted cyclically)

3. Save the configuration as exercise 1e to your PC.

4. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

PCAN-MIO – Configuration Tutorial

28

4.6 Exercise 1f: Scale and Offset

With Scale and Offset, values from a CAN bus can be manipu-
lated like using the four basic arithmetics, all this without using
a function block. For example, an increasing 8-bit value (rising
ramp) can be inverted (falling ramp) 0 > 0xFF, 0xFF > 0.

To do so, the original value from the incoming message is
written into a 32-bit variable (there is no smaller type), and when
writing to the output message, this value is processed with
Scale = -1 and Offset = 255. As an alternative, the incoming
value can be processed immediately (before writing it to the 32-
bit variable), and is then passed on to the CAN message directly.

Important Note: Make sure that the manipulated result value –
under all conditions - fits into the 32-bit size.

1. Create an empty configuration file using the menu item File
> New.

2. Add two symbols (CAN messages) to the already existing
CAN bus.

3. Each message will get an 8-bit variable (CAN signal).

PCAN-MIO – Configuration Tutorial

29

Create a new configuration within the file and import all
CAN objects. The parameters then should be entered to
meet this scenario: A message 0x100 is received, the con-
tained signal is written into a 32-bit variable #0. A message
0x200 is transmitted cyclically (100 ms), the contained signal
is taken from the 32-bit variable #0, inverted (Scale = -1) and
lifted (Offset = 255).

4. Save the configuration as exercise 1f to your PC.

5. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

The data contained in the receive message 0x100 (data byte 0) is
transmitted as y = (-1)*x+255 resp. y = 255-x in message 0x200. A
rising ramp (increasing x values) is converted into a falling ramp
(decreasing y values).

PCAN-MIO – Configuration Tutorial

30

4.7 Exercise 1g: Exporting a Symbol File

For users of the PCAN Explorer (Part No IPES-005028) it is comfort-
able to display the content of CAN messages decoded to plain text.
For this, a symbol file must be imported, created and saved to file
by the PPCAN-Editor. It is based on the project from exercise 1f.

PPCAN-Editor:

1. Select the General tab to focus the data base.

2. Select the menu item File > Export > Into Symbol File.

3. Save the symbol file as exercise 1g to your PC.

A window appears offering CAN objects to be exported.
Click on those objects you wish to export, or click Select All.

4. Click the Export button. The symbol file is now created.

PCAN-MIO – Configuration Tutorial

31

PCAN-Explorer:

5. The symbol file may be loaded with File > Open and
activated with File > Apply.

The PCAN-Explorer will now show (in column Data) the
transferred byte in decimal notation with the correct
variable name.

PCAN-MIO – Configuration Tutorial

32

4.8 Exercise 1h: Creating a Simple
Instrument Panel

Using a PCAN-Explorer (Part No. IPES-005028) with installed
Instrument Panel Add-in (Part No. IPES-005088), the CAN values
may be represented and modified graphically.

The variables from exercise 1g also appear as CAN objects in the
PCAN explorer's Project Browser on the left screen edge. Here they
may be used e.g. in connection with an instrument/control for
simple editing resp. visualization of signals.

For example, the CAN signal “Original” can be manipulated
easily using a slider. Also the use in scripts for test automation
is a possible application of these objects.

1. Select the menu item Tools > Instruments Panel > Create
horizontal Slider Control.

PCAN-MIO – Configuration Tutorial

33

This creates a new instrument panel with a horizontal slider.

2. Assign a CAN variable to this slider control by drag and
drop.

Simply drag the variable over the instrument/control and
drop it there.

By this, the instrument/control also gets appropriate settings for
value range etc. Nevertheless, settings can be edited manually with
Properties > Data > Value Setting.

PCAN-MIO – Configuration Tutorial

34

For also displaying the result signal "Invertiert" comfortably, add a
display instrument and seize it with the CAN variable.

3. Select the menu item Tools > Instruments Panel > Create
Value Indicator to get a display instrument. Place this e.g.
below the slider, and finally assign the CAN variable
"Invertiert" by drag & drop.

4. Right click somewhere in the instruments panel and choose
Run Mode to make use of the instruments.

PCAN-MIO – Configuration Tutorial

35

Moving the slider manipulates the first byte of the transmit
message 0x100 (values between 0 and 255). In the receive
message 0x200 the resulting byte value displays vice versa.
The values contained in the receive message 0x100 (data
byte 0) are transmitted as y = (-1)*x+255 resp. y = 255-x in
message 0x200. A rising ramp ("Original", increasing x
values) is converted into a falling ramp ("Invertiert",
decreasing y values).

5. Save the panel as exercise 1h.ipf to your PC.

PCAN-MIO – Configuration Tutorial

36

4.9 Exercise 2a: Reading Digital Input
State and Transmitting this in a CAN
Message

The PCAN-MIO is equipped with various hardware inputs and
outputs, which can be linked to other resources.

To set the logical state of a digital input, make a connection with
either GND or Vbat to a Din.

1. Create an empty configuration using the menu item File >
New.

2. Add a symbol (CAN messages) to the already existing CAN
bus.

3. The message gets a 1-bit variable (CAN signal for the digital
input Din-0).

4. Create a new configuration and import the CAN objects.

PCAN-MIO – Configuration Tutorial

37

Enter the parameters for the message 0x100 as shown.

 Direction: Transmit

 Enable: yes

 Period: 250

The contained signal is assigned to the state of digital input
Din-0.

 Direction: Transmit (the PCAN-MIO transmits the status of digital
input DIN-0)

 I/O Funktion: 80h DIn Level

 I/O Number: 0

 Scale: 1

 Offset: 0

 Enable: yes

5. Save the configuration as exercise 2a to your PC.

6. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

PCAN-MIO – Configuration Tutorial

38

The CAN message with ID 0x100 is transmitted cyclically and the
first byte reflects the logical state of digital input Din-0.

If this input is not connected, the transmitted value depends on
whether the internal PullUp or PullDown resistor is activated. This is
also part of your configuration (in tab Default values for data
objects). If the input is connected to a voltage source, the
transmitted value is 1 when connected to Vbat, or the transmitted
value is 0 when connected to GND.

4.10 Exercise 2b: Setting Digital Output
State According to a Received CAN
Message

For supervising the digital output Dout-0, a voltage meter
(voltmeter respectively DMM) should be connected to this
output. Alternatively, a LED with a matching series resistor (e.g.
about 1.8 kOhm) may be connected from here towards GND.

1. Open exercise 2a and save as exercise 2b to your PC.

2. In the General tab rename the CAN signal Din0 to Dout0.

3. In the Config0 I/O tab enter the following values for the CAN
message and the CAN signal.

 Direction: Receive

 I/O Function: 00h DOut Level

 Enable: yes

PCAN-MIO – Configuration Tutorial

39

The PCAN-MIO is equipped with configurable drivers for the digital
outputs:

 a) The outputs 0...7 can drive Vbat level or an open state (High-
side driver). For this purpose the I/O numbers Do H0 up to Do H7
should be chosen

 b) The outputs 0...7 can sink GND level or an open state (Low-
side driver). For this purpose the I/O numbers Do L2 up to Do L7
should be chosen

 c) The outputs 0...7 can drive Vbat level or sink GND level (Push-
Pull driver). For this purpose the I/O numbers Do HL0 up to Do
HL7 should be chosen

4. Save the configuration as exercise 2b to your PC.

5. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

When a message 0x100 transmitted to the PCAN-MIO with
Byte0/Bit0 = 1, the digital output Dout-0 will be activated.

 In case a) obtains a Vbat level

 In case b) a GND level

 In case c) a Vbat level

When a message 0x100 transmitted to the PCAN-MIO with
Byte0/Bit0 = 0, the digital output Dout-0 will be deactivated.

 In case a) obtains an open state

 In case b) an open state

 In case c) a GND level

PCAN-MIO – Configuration Tutorial

40

4.11 Exercise 2c: Reading Analog Input
State and Transmitting this in a CAN
Message

For comprehensible results in the following example, please
connect a voltage source to the analog input Ain-0. For this
example a 10K Ohm potentiometer can be connected between
GND and Vbat, so that a variable voltage is available at the
pickup. The resolution of the A/D converter is 10 bit. Accordingly
the CAN signal must be two bytes wide (when using Scale = 1).

1. Open the configuration exercise 2a and save as exercise 2c
to your PC.

2. On the General tab change the length of the CAN message
to 2 byte, rename the CAN signal to Ain0 and increase the
bit length to 10.

3. In the Config0 I/O tab assign the following values to the
CAN signal.

 I/O Function: 90h AIn Level

 I/O Number: AIn 0

PCAN-MIO – Configuration Tutorial

41

 Enable: yes

4. Save the configuration as exercise 2c to your PC.

5. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

The message 0x100 is transmitted cyclically to CAN-1 (every 250
ms). When a variable voltage is applied to the input Ain-0, the
contents of the message is changed in bytes 0 and 1 (10-bit value),
whereas byte 0/bit 0 is the LSB, byte 1/bit 1 is the MSB (Intel
format).

With the help of the PCAN-Explorer Add-in Instrument Panel (Part
No IPES-005088), the values can be represented graphically, e.g.
using a bar graph control (see exercise 1h).

PCAN-MIO – Configuration Tutorial

42

4.12 Exercise 2d: Setting of Analog Outputs
According to a Received CAN Message

For supervising the analog output Aout-0, a voltage meter
(voltmeter respectively DMM) should be connected to this
output.

1. Open exercise 2c and save as exercise 2d to your PC.

2. In the General tab rename the CAN signal to Aout0.

3. In the Config0 I/O tab change the CAN message from
transmit to receive, and assign the CAN signal to Aout-0.

4. Save the configuration as exercise 2d to your PC.

5. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

When a message 0x100 is sent to the PCAN-MIO, with a 10-bit value
encoded in the correct position (Intel format), you can measure an
equivalent voltage 0 - 10 V at the analog output Aout-0.

PCAN-MIO – Configuration Tutorial

43

By means of the PCAN-Explorer Add-in Instrument Panel (Part No
IPES-005088), the values can be set using a slider control (see
exercise 1h).

4.13 Exercise 2e: Switching the 5 V Output

For the supply of sensors the PCAN-MIO provides a switchable
auxiliary voltage of 5 V which can drive loads up to 200 mA.

For supervising the state of the auxiliary voltage, a voltage
meter (voltmeter respectively DMM) should be connected to this
output. Alternatively, a LED with a matching series resistor (e.g.
about 390 Ohm) may be connected from here towards GND.

1. Open exercise 2b and save as exercise 2e to your PC.

2. In the General tab rename the CAN signal to 5Vout.

3. In the Config0 I/O tab assign the following values to the
CAN signal.

 I/O Function: 70h Special Out

PCAN-MIO – Configuration Tutorial

44

 I/O Number: Supply 5 V

4. Save the configuration as exercise 2e to your PC.

5. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

When a message 0x100 transmitted to the PCAN-MIO carries
byte0/bit0 = 1, the 5 V output will be activated, if byte0/bit0 = 0, the 5
V output will be deactivated.

4.14 Exercise 3a: Manipulating a CAN Signal
using Function Block Characteristic
Curve

The temperature of a motor’s cooling fluid shall be represented as
constantly 90 °C, even if the real coolant temperature varies
between 80 °C and 105 °C. Such plateau is often implemented for
smoothing of analog meters. In case the real temperature leaves the
specified range (e.g. motor defect), it shall be displayed directly.

For implementing such behavior, the function block
“characteristic curve" is suitable, converting the incoming
measured temperature from the engine (raw value) into an
artificial curve containing a plateau for the analog instrument.

PCAN-MIO – Configuration Tutorial

45

That smoothed value is then transmitted in a separate CAN
message.

1. Create an empty configuration file using the menu item File
> New.

2. Define two CAN messages with an 8-bit CAN signal each.

 CAN-ID: 0x100 for the incoming raw value; 0x200 for the
outgoing display value (with plateau)

 DLC: 1 (both CAN messages are 1 byte of length)

 Enable: yes

 Bit Length: 8

 Signed: no, always positive

3. Create a new configuration within the configuration file by
selecting the menu item Edit > New Configuration.

4. Import the globally defined CAN busses with all CAN
messages and CAN signals. Open the context menu (right
click) and select Add defined Bus.

PCAN-MIO – Configuration Tutorial

46

 Direction: 0x100 is received, 0x200 is transmitted.

 Enable: yes

 Period: 500 ms (cycle time for the transmit message carrying the
converted coolant temperature signal).

 I/O Function, I/O Number: The signal RealTemperature from
receive message 0x100 is transferred into variable #0, the
modified result WithPlateau is transferred into transmit message
0x200.

The assignment of the raw value (variable #0 to the smoothed result
variable #1) is defined in a characteristic curve (a list of X/Y pairs). A
function block “characteristic curve” is needed to manage the
conversion using this list. The following table defines all points
needed to create the mentioned plateau (X values other than the
listed ones are linearly interpolated):

PCAN-MIO – Configuration Tutorial

47

 X Y

Curve point 0 X=0 Y=0

Curve point 1 X=75 Y=75

Curve point 2 X=85 Y=90

Curve point 3 X=105 Y=90

Curve point 4 X=110 Y=110

Curve point 5 X=255 Y=255

This conversion table is now keyed as a characteristic curve.

5. Double click on the Icon Config0 at the left window edge.
Select the Characteristic curve tab. Open the context menu
(right click) and select Add Record.

A new table row appears, representing a characteristic
curve. This curve must be filled with the mentioned values.

 CurveID: 13 (an arbitrary number)

 Point Count: 6 (number of X/Y points on the curve)

 Pairs of values 0... 5: the characteristic curve (values taken from
the table above). Further entries are not used and contain 0

Important Note: X value must be entered in strictly ascending
order!

Finally, you must manage the assignment of the incoming
raw value to the characteristic curve’s X axis and also of the
resulting Y value (= result) to variable #1, which is

PCAN-MIO – Configuration Tutorial

48

subsequently transmitted onto CAN. For this, a special
function block Characteristic curve is needed, which handles
that conversion.

6. Click to the Function blocks tab to create a new function
block. Open the context menu (right click) and select Add
Record.

A new line appears, representing a function block. This line
must be supplied with values.

Basically, each function block has two inputs (operands) and
one output (result), each of these consisting of an I/O type
and an I/O number. Additional there is a main switch
(enable) and a cycle time (How often is this block re-
calculated, in ms).

Note: In the function block Characteristic curve the second
input is always unused.

7. Enter the following parameters into the function block.

 Function Code: Characteristic Curve (a special function block for
this purpose)

 Enable: yes, this function block shall be active

 Input1 I/O Function: FFh 32bit Variable

 Input1 I/O Number: 0 (X value comes from 32-bit variable #0)

 Input2 I/O Function: F0h Special In (not used)

 Input2 I/O Number: none (not used)

PCAN-MIO – Configuration Tutorial

49

 Output I/O Function: FFh 32bit Variable

 Output I/O Number: 1 (Y result is written to 32-bit variable #1)

 Parameters: 13 (number of the already defined characteristic
curve). When clicking the field, the following dialog window
appears:

 Enter the number of the already defined characteristic curve in
column Value. Confirm with Close

 Cycle time: 100 (calculation of the raw value takes place every
100 ms)

8. Save the configuration as exercise 3a to your PC.

9. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

A continuously rising input value (from message 0x100) is
superimposed with a plateau and then forwarded (to message
0x200).

PCAN-MIO – Configuration Tutorial

50

With the help of the PCAN-Explorer Add-in Instrument Panel (Part
No IPES-005088), the values can be represented graphically (see
exercise 1h).

4.15 Exercise 3b: Threshold with Hysteresis

Thinking of an extension for exercise 3a, a warning lamp comes in
mind which shall be lit when temperature exceeds 123°C and goes
dark when temperature falls below 118°C. For such behavior a
function block Hysteresis is suitable.

The warning lamp is connected to Dout-0. Maybe use a LED with
a matching series resistor (e.g. 1.5 kOhm) towards GND.

1. Open exercise 3a and save as exercise 3b to your PC.

2. To create another function block, click on the Function
blocks tab. Open the context menu (right click) and select
Add Record.

3. Enter the following parameters into the function block.

PCAN-MIO – Configuration Tutorial

51

 Function Code: Hysteresis (the threshold switch with hysteresis
function)

 Enable: yes, this function block shall be active

 Input1 I/O Function: FFh 32bit Variable

 Input1 I/O Number: 1 (you can also use 0, because in this
temperature range the curves run identically)

 Input2 I/O Function: F0h Special In (not used)

 Input2 I/O Number: none (not used)

 Output I/O Function: Dout-0 (a hardware output with High-side
driver)

 Parameter: Lower Threshold: 118 °C (switch off point); Upper
Threshold: 123 °C (switch on point); below Lower Threshold
(LowOutValue) the output Dout-0 will be inactive (0); above
Upper Threshold (HighOutValue) the output Dout-0 will be
active (1)

 Cycle time: 100 (calculation of the raw value takes place every
100 ms)

4. Save the configuration as exercise 3b to your PC.

5. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

PCAN-MIO – Configuration Tutorial

52

When CAN message 0x100 transmits a temperature > 123 °C to the
PCAN-MIO, the output Dout-0 changes to 1 (LED on).

When CAN message 0x100 transmits a temperature < 118 °C to the
PCAN-MIO, the output Dout-0 changes to 0 (LED off).

Note: A readable name can be assigned to each 32-bit variable
(and other resources). To do this, follow these steps:

1. Starting from the Function blocks tab, select the menu item
Edit > I/O-Funktion.

The following dialog window appears:

Rename the 32-bit variable #0 into “Rohwert” and the
variable #1 into “Anzeigewert”.

PCAN-MIO – Configuration Tutorial

53

Rename the variable DOut Level #0 into “Warnlampe”.

From here you can work with these names in the configuration,
which will reduce errors caused by confusion of a variable number
significantly.

4.16 Exercise 3c: Transmission only on
Signal Changes

1. Open exercise 2c and save as exercise 3c to your PC.

2. In the Config0 I/O tab switch off the periodic transmission of
the CAN message 0x100 (change cycle time from 250 ms to
0 ms).

PCAN-MIO – Configuration Tutorial

54

Thus, the CAN message is not longer transmitted cyclically.

 Period: 0 ms

 Event Time: 50 ms (if the message is triggered constantly, this is
the minimum transmission distance. So the bus load will be
limited.)

The CAN signal in this message remains unchanged.

3. The condition which triggers the transmission, is defined in
the configuration window.

4. Double click on the Icon Config0 at the left window edge.
Select the Event based messaging tab. Open the context
menu (right click) and select Add Record.

If the trigger hits, the defined message 0x100 should be
transmitted onto CAN-0. Trigger should be an analog level,
which is applied to Ain 0. If this level changes by an amount
(parameter threshold), then ID 0x100 will be transmitted.

PCAN-MIO – Configuration Tutorial

55

 Bus: Bus_0

 Message: 0x100

 I/O Function: 90h Ain Level

 I/O No: AIn-0

 Event Type: Signal change by threshold

 Threshold: 5

 Enable: yes

5. Save the configuration as exercise 3c to your PC.

6. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

If a potentiometer (as described in exercise 2c) is connected to Ain-0
and turned, then the PCAN-MIO will transmit a message 0x100
containing the analog value.

The transmit frequency can be varied with the parameter threshold.
This threshold however should be greater than 1 because the LSB
of the A/D converter may flicker, if the pot value is on a boundary
between two digits.

The trigger signal (here: Ain-0) -must- be included in the transmit
message, otherwise the message is not transmitted. If it shall be
invisible, its length may be set to 0.

PCAN-MIO – Configuration Tutorial

56

4.17 Exercise 4a: Setting the CAN Bit Rate
(Default Value)

Depending on the installed CAN transceivers, PCAN-MIO sets the
following bit rates by default:

Interface-Type CAN-Transceiver Default bit rate WakeUp-capability

HS TJA-1041 (default) 500 kbit/s yes

HS opto TJA-1040 500 kbit/s no

HS TJA-1040 500 kbit/s no

LS-DW TJA-1054 125 kbit/s no

LS-SW TH-8056 33,3 kbit/s yes

When starting the PCAN-MIO these values can be overwritten by
appropriate entries in the Default values for data objects tab of your
configuration.

PCAN-MIO – Configuration Tutorial

57

Note: As PPCAN-Editor (running on your PC) doesn't know
about the transceiver types installed in your PCAN MIO, it will
offer all usual bit rates. Please take care that the equipped
transceivers support the settings, e.g. LS-SW does not support
bit rates beyond 83.3 kbit/s, whereas TJA-1040 does not
support bit rates below 40 kbit/s.

4.18 Exercise 5a: Reading the Module ID
(Diagnostics)

The module ID is a 4-bit value, which is set to 0 by default, but can
be changed inside of the PCAN-MIO by means of a rotary switch.
The ID has several functions. For example, it selects one from
several configurations contained in a PPCAN project file according
to the switch position. When experiencing strange behavior of your
currently uploaded configuration, one of the first steps in trouble-
shooting is determination of the module ID. It sometimes may
happen that a configuration is edited again and again without
success, since each time a different one is executed by the PCAN-
MIO.

As an example, we now transmit a CAN message "Diagnosis"
with ID 0x280, length 8 bytes on bus CAN-0. This message
contains the 4-bit signal ModuleID, which displays the current
position of the module ID switch.

1. Create a new configuration and define a Transmit message
Diagnosis, that contains a CAN signal with the module ID.

PCAN-MIO – Configuration Tutorial

58

 CAN-ID: 0x280

 DLC: 4

 Enable: yes

2. Create a new CAN signal ModuleID.

 Bit Length: 4

3. Importing of the message and CAN signal into the
configuration and entering the parameter.

 Direction: Transmit

 Enable: yes

 Period: 250 ms

4. Supplying the signal with internal variable ModuleID of the
PCAN-MIO.

PCAN-MIO – Configuration Tutorial

59

 I/O Function: F0h Special In

 I/O Number: Module-ID

 Enable: yes

5. Save the configuration as exercise 5a to your PC.

6. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

A cyclic message Diagnosis (with ID 0x280) will be transmitted
every 250 ms, which carries the signal ModuleID.

Note: Changes of the module ID (e.g. by turning the rotary
switch) is shown immediately, but it becomes effective only
after a restart of the module (e.g. Power Off/On).

4.19 Exercise 5b: Reading the Firmware
Version (Diagnostics)

The firmware version of PCAN-MIO can be read for diagnostic
purposes.

1. Open exercise 5a and save as exercise 5b to your PC.

2. Add another three CAN signals (FirmwareVersionMain,
FirmwareVersionSub, FirmwareBuildNo) and enter the
parameters as follows.

PCAN-MIO – Configuration Tutorial

60

 In the second message byte (byte 1), the 8-bit value
FwVersionMain shall be transmitted

 In the third message byte (byte 2), the 8-bit value FwVersionSub
shall be transmitted

 In the fourth message byte (byte 3), the 8-bit value
FwBuildNumber shall be transmitted

3. Import the three CAN signals into the configuration as
follows: Open the context menu (right click) and select Add
defined Variable.

Supply the signals with values (assign virtual module
resources).

4. Save the configuration as exercise 5b to your PC.

5. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

PCAN-MIO – Configuration Tutorial

61

The cyclic message Diagnosis with ID 0x280 now also includes
information on the firmware version.

4.20 Exercise 6: CAN Messages on Request

Based on exercise 5b the internal variable Diagnosis shall be
transmitted on remote request (RTR = Remote Transmission
Request).

1. Open exercise 5a and save as exercise 5b to your PC.

2. Modify the CAN message to a transmission request by
setting the RTR check for that symbol.

 RTR: yes (activate Remote Transmission Request)

3. Set period value 0, thus switching off cyclic transmission.

PCAN-MIO – Configuration Tutorial

62

 Period: 0 (no more cyclic transmission)

4. Save the configuration as exercise 5b to your PC.

5. Transmit (upload) the configuration to the PCAN-MIO via
CAN bus.

CAN message Diagnosis with ID 0x280 is transmitted only if a
request with ID 0x280 and length = 0 was received previously.

4.21 Exercise 7: Sleep Mode (Energy Saving)

The PCAN-MIO can switch off itself (configurable) e.g. for saving
battery power. This so called sleep mode occurs:

 if (with installed wake-up-capable CAN transceivers) no further
CAN message is received that could awaken the transceiver

 and the hardware input WakeUp does -not- detect a Vbat level
(e.g. clamp 15)

 and the internal variable SELFHOLD is set to 0

After waking up either by reception of an adequate CAN message
(with installed wake-up-capable CAN transceivers) or with Vbat level
at the hardware input WakeUp, the internal variable SELFHOLD is
set to 1 and keeps the module alive from here.

Prerequisite for the awakening is, that the appropriate CAN bus is
equipped with a wake-up-capable transceiver, e.g. LS-SW.

PCAN-MIO – Configuration Tutorial

63

Interface-Type CAN-Transceiver Default bit rate WakeUp-capability

HS TJA-1041 (default) 500 kbit/s yes

HS opto TJA-1040 500 kbit/s no

HS TJA-1040 500 kbit/s no

LS-DW TJA-1054 125 kbit/s yes

LS-SW TH-8056 33,3 kbit/s yes

In case a CAN message is no longer received and a timeout value is
specified, all contained CAN signals reset to a default value. This
default signal value is 0, unless specified otherwise in the tab
Default values for data objects.

On most vehicle CAN busses, there is usually a cyclic signal that
reflects the position of the ignition key (clamp 15 and power mode).
By receiving a WakeUp frame from the vehicle (e.g. high voltage
levels) the PCAN-MIO wakes up and then reacts to the receipt of the
CAN signal IgnitionOn. As long as the CAN signal IgnitionOn = 1,
the module should stay awake, when IgnitionOn = 0 the PCAN-MIO
should go asleep (delayed by 6 seconds), independent from other
transmitted messages. The signal IgnitionOn = 1 triggers/retriggers
a Monoflop, that expires 6 seconds after the last trigger and sets
subsequentially SELFHOLD = 0.

1. Create a new configuration and define a transmit message
that contains a CAN signal ignition key on.

 Message name: IgnitionState

 CAN-ID: 0x101

 DLC: 1 byte

PCAN-MIO – Configuration Tutorial

64

 Enable: yes

 Signal name: KeyOn

 Bit Length: 1 bit

 Byte/Bit Position: 0, 0 (in the first byte right)

 Signed: no, only 1 bit

PCAN-MIO – Configuration Tutorial

65

2. Create a new configuration within the configuration file.
Import the globally defined CAN busses with all CAN
messages and CAN signals.

 Direction: Receive

 TimeOut: 1000 ms (afterwards the signal goes to the default
value 0)

 I/O Function: FFh 32bit Variable

 I/O Number: 0

 Scale: 1

 Offset: 0

 Enable: yes

3. Double click on the Icon Config0 at the left window edge,
and click to the Function blocks tab to create a new function
block.

4. Create a function block Monoflop, which deactivates
SELFHOLD (5 seconds after the variable 0 has changed to
value 0).

PCAN-MIO – Configuration Tutorial

66

 Function Code: Monoflop

 Enable: yes

 Input1 I/O-Function: FFh 32bit Variable

 Input1 I/O-Number: 0

 Input2 I/O-Function: not used

 Input2 I/O-Number: not used

 Output I/O-Function: 70h SpecialOut (a virtual module resource)

 Output I/O-Number: Selfhold

 Parameter: 5 s, everything else can be looked up in the reference

 Cycle Time: 100 ms

5. Save the configuration as exercise 5b to your PC.

6. Transmit (Upload) the configuration to the PCAN-MIO via
CAN bus.

5 seconds after the signal changes from 1 to 0 (or 6 seconds after
the message fails), SELFHOLD turns off the power supply and the
module goes into sleep mode. With a wake-up capable transceiver
equipped, the PCAN-MIO can be reactivated by a CAN message.
Alternatively, the WakeUp line can be supplied with high-level.

PCAN-MIO – Configuration Tutorial

67

4.22 Exercise 8a: Transmitting a
Multiplexer Message Automatically

Information: The example transmits a CAN message with varying
variables that are controlled by a multiplexer (intermediate
addressing).

Definition: The example message has the following key parameters:

 CAN ID: 100h

 Length: 3 bytes

 Bit assignment (variables):

Byte no./
Start bit

Bits Designation Use

0/0 8 Mux-Val Multiplexer

1/0 8 Data_Common Variable independent of multiplexer
(always used)

2/0 8 Data_Mux-is-2
Data_Mux-is-4
Data_Mux-is-6

Changing variable depending on the
multiplexer value in data byte 0 (here:
2, 4 or 6)

Action: In the CAN Objects windows on the General tab, create the
new CAN message 100h with the key parameters above. For the
variables enter the following in the columns Multiplexer Type and
Multiplexer Value:

Designation Multiplexer Type /
Value

Explanation

Mux-Val Multiplexer Value determines which Multiplexed
variable is used.

Data_Common None Variable is always used in this CAN
message, independently of the
Multiplexer.

Data_Mux-Is-2 Multiplexed / 2

Data_Mux-Is-4 Multiplexed / 4

Data_Mux-Is-6 Multiplexed / 6

On Multiplexer values 2, 4, and 6, the
corresponding variable is used.

PCAN-MIO – Configuration Tutorial

68

Remark: The setting in the Multiplexer Type column has the
following possibilities:

 Multiplexer: The variable contains the multiplexer value (data
type Unsigned). This multiplexer type may only be used once
within a message and must be placed before the variable
definitions of the Multiplexed type in the list.

 None: This variable is used in all transmit messages,
independently of the multiplexer value.

 Multiplexed: This variable is only transmitted if the given
Multiplexer Value fits the current multiplexer value from
Mux-Val.

Information: In the following, fixed test values are assigned to the
Data variables to be transmitted. Furthermore, the message is to be
transmitted every 200 ms. Definition is done in the device-specific
configuration (here: Config0 I/O).

Action: If not already done, add a new configuration to the PPCAN-
Editor project with Edit > New Configuration. Select the module
type PCAN-Router Pro (see also on page 12).

In the context menu (right-click) of the CAN message Msg_100,
select the Add Symbol to Configuration entry and then Config0 I/O.

PCAN-MIO – Configuration Tutorial

69

Definition: In the configuration Config0, now some settings for the
CAN message and the contained variables must be done, in the
CAN Objects window as well as in the Config0 window.

PCAN-MIO – Configuration Tutorial

70

Remark: The resource Special In (F0h)/none is assigned to the
multiplexer variable Mux-Val. This means that the variable is set to
the next Multiplexed variable with each transmission of the CAN
message (here every 200 ms). Thus, the Multiplexed variables are
transmitted in sequence.

Information: The configuring process for this example is finished
and the project can be transferred to the PCAN-Router Pro.

4.23 Exercise 8b: Transmitting a
Multiplexer Message on Request

Information: In alternative to the automatic iteration of the
Multiplexed variables, another resource can be used, e.g. a 32-bit
variable that is changed via CAN. In this way the multiplexer value
is determined from the outside.

Application possibility: Several parameters are to be polled via
CAN, but only a single CAN ID is available for transmission. A
multiplexer value is assigned to each parameter. The multiplexer
value is determined by a separate receive message, as answer the
multiplexer CAN message is transmitted.

In this exercise, the reception of the CAN message 1FFh (1 byte)
triggers the transmission of the already existing 100h message. The
data byte of 1FFh is used as multiplexer value in 100h.

Remark: This exercise is based on the previous 8a.

PCAN-MIO – Configuration Tutorial

71

Action: In the CAN Objects window on the General tab, create the
additional CAN message 1FFh with the following properties:

 CAN ID: 1FFh (Trigger_Msg_100)

 Length: 1 byte

 Bit assignment (variables):

Byte no./
Start bit

Bits Designation Use

0/0 8 Request_MuxData Value for the multiplexer in ID 100h

Under Config0 I/O, set the message to Receive and assign the
Request_MuxData variable to the internal 32-bit variable 255 (I/O
function FFh).

Also under Config0 I/O, alter the already existing CAN message
Msg_100 (100h) that it is not transmitted periodically anymore by
setting the Period to 0. Alter the Mux-Val variable that it receives its
value from the internal 32-bit variable 255 (I/O function FFh).

Like in exercise 1c (on page 19), a new entry is inserted in the
Message Gateway of Config0 so that the reception of
Trigger_Msg_100 triP2E9A5ggers the transmission of Msg_100.

Information: The configuring process for this example is finished
and the project can be transferred to the PCAN-Router Pro.

PCAN-MIO – Configuration Tutorial

72

4.24 Exercise 9: Bonus Exercises

 One could develop a configuration, which issues a pulse wave
on Dout-0 with a defined frequency and duty cycle. This may be
verified using a suitable measuring instrument (frequency
meter, oscilloscope). The frequency or duty cycle may be
controlled via CAN message

 One could develop a configuration, which evaluates an
incoming pulse wave on Din-0 regarding frequency and duty
cycle. This may be verified using a suitable pulse generator
(function generator, signal generator). The measured frequency
and duty cycle may be transmitted onto CAN bus, or 2
proportional analog voltages may be issued at Aout-0 and
Aout-1

 One could develop a configuration, which (depending on a Din)
routes a 32-bit signal through one of two characteristic curves.
There is also a "set of characteristic curves" forming a 3
dimensional translation area controlled by an additional
parameter Z coming in via CAN. If Z is between 2 curves, the
result will be interpolated linearly.

 Also think of feedback control systems: a vast area …

	Front page
	Relevant products
	Imprint
	Contents
	1 Introduction
	1.1 Prerequisites for Operation

	2 The Configuration Concept
	2.1 Possibilities of Configuration
	2.2 Scaling
	2.3 CAN Gateway Services
	2.4 Default Values
	2.5 Function Blocks
	2.6 Event-triggered Transmission of CAN Messages
	2.7 Characteristic Curves

	3 List of Exercises
	4 Solutions Explained Stepwise
	4.1 Exercise 1a: Forwarding of all Messages from CAN-0 to CAN-1 (Gateway)
	4.2 Exercise 1b: Definition of CAN Messages
	4.3 Exercise 1c: Routing the Defined Messages from CAN-0 to CAN-1
	4.4 Exercise 1d: Combination 1a and 1c
	4.5 Exercise 1e: Cyclic Transmission of a Message on CAN-1 with Signals from CAN-0
	4.6 Exercise 1f: Scale and Offset
	4.7 Exercise 1g: Exporting a Symbol File
	4.8 Exercise 1h: Creating a Simple Instrument Panel
	4.9 Exercise 2a: Reading Digital Input State and Transmitting this in a CAN Message
	4.10 Exercise 2b: Setting Digital Output State According to a Received CAN Message
	4.11 Exercise 2c: Reading Analog Input State and Transmitting this in a CAN Message
	4.12 Exercise 2d: Setting of Analog Outputs According to a Received CAN Message
	4.13 Exercise 2e: Switching the 5 V Output
	4.14 Exercise 3a: Manipulating a CAN Signal using Function Block Characteristic Curve
	4.15 Exercise 3b: Threshold with Hysteresis
	4.16 Exercise 3c: Transmission only on Signal Changes
	4.17 Exercise 4a: Setting the CAN Bit Rate (Default Value)
	4.18 Exercise 5a: Reading the Module ID (Diagnostics)
	4.19 Exercise 5b: Reading the Firmware Version (Diagnostics)
	4.20 Exercise 6: CAN Messages on Request
	4.21 Exercise 7: Sleep Mode (Energy Saving)
	4.22 Exercise 8a: Transmitting a Multiplexer Message Automatically
	4.23 Exercise 8b: Transmitting a Multiplexer Message on Request
	4.24 Exercise 9: Bonus Exercises

